
Integration of Mobile Agents and Web Services

Jan Peters

Fraunhofer Institut f̈ur Graphische Datenverarbeitung
Fraunhoferstraße 5, 64283 Darmstadt, Germany

jan.peters@igd.fraunhofer.de

Abstract. The web service specification represents an open standard for dis-
tributed service oriented architectures, already impacting a broad range of com-
merce and industry. Web services are widely used in current web-based business
applications, and form the basis of emerging frameworks in Grid computing. Cur-
rent mobile agent systems implement similar (often proprietary) mechanisms for
service description, invocation and discovery. Furthermore, mobile agents pro-
vide very specific advantages with respect to dynamic and concurrent service
composition resp. execution, as well as the extension of server-sided services with
client-side intelligence and functionality. This short paper introduces an architec-
ture which seamlessly connects mobile agents with web services in a transparent
and fully automated manner by means of a specialized Web Service Engine. This
Web Service Engine has been implemented and integrated into the Secure Mobile
Agents (SeMoA1) platform.

1 Introduction

Similar to web services, software agents can encapsulate business or application logic.
Rather, software agents can dynamically discover, combine and execute such processes,
and further offer multiple services or behaviors, that can be processed concurrently. In
order to move from one system to another, or even to communicate with each other,
mobile agents currently need a common platform on which they operate. Thus, they
are useful for business partners only if these actually share a common platform. The
consistent use of web service standards for description of capabilities, communication,
and agent discovery would establish interoperability not only between different agent
platforms but also between agent platforms and traditional web services. Thus, the ad-
vantages of two worlds can be combined.

To integrate mobile agent and web service technology in a seamless manner, compo-
nents have to be designed, which map between the different mechanisms forservice de-
scription, service invocation, andservice discovery, in both worlds. In other words, mes-
sages resp. representations from the according web service protocols (WSDL, SOAP,
UDDI) have to be translated into corresponding requests resp. data types of the agent
system, and vice versa. When I talk of aweb service enginein the remainder of this pa-
per, I mean the summary of these components, which can be integrated into an existing
agent system, and thereby extend this system with web service abilities (cf. Fig. 1).

1 SeMoA - Secure Mobile Agents. http://www.semoa.org/



Web Service Provider

Web Service Client

SOAP

UDDI - Registry

SOAP

U
D

D
I

U
D

D
I

UDDI

WSDL

WSDL

migrate

migrate

communicate

communicate

W
e

b
 S

e
rv

ic
e

 E
n

g
in

e

register

request

M
o

b
ile

 A
g

e
nt G

a
te

w
a

y

Mobile Agent Plattform

Fig. 1.WSE Integration Architecture

Application Server

Mobile Agent PlattformMobile Agent Platform

Web Service Client

WS

MA

WS

MA

WS

invoke

invoke

migrate

Fig. 2. Example Scenario

This web service engine enables both, agents offering encapsulated functionality as
web service (service provider) as well as agents utilizing web services (service client).
In a compound scenario, one agent might offer a functionality provided as web service
which in turn can be utilized by another agent acting as web service client. Assuming
transparent integration, as I want to define it, the service as well as the client agent
should not recognize any “agent service to web service” resp. “web service to agent
service” mappings during the service description, discovery, and invocation process. In
other words, they should only need to know and utilize the usual mechanisms of their
specific agent environment. Of cause, a traditional external web service client should
be able to directly use the interfaces of the web service engine to search for and utilize
agent based services as web services.

Both web service and mobile agent technology have different attack scenarios and
thus ask for different solutions. The main concern in web service security is to prohibit
unauthorized access to resources from (malicious) clients. As we talk of mobile agent
based web services, i.e. program code is transported to another host and executed locally
within a foreign environment, we must not neglect the correspondingsecurity aspects.
Within the mobile agent community there has been elaborate discussion about security
concerns in the past. A lot of solutions and protocols have been proposed which prevent
or at least reveal malicious behavior dependent on the specific application. When inte-
grating web services and mobile agents it has to be assured that the new mean of service
interaction does not bypass or override existing security mechanisms of the agent sys-
tem. In my approach I combine the security mechanism of our SeMoA platform with
security mechanisms from web service technology.

2 Example Scenario

Based on such an architecture, many interesting use cases are conceivable. In this sec-
tion I want to give one concrete example scenario. As shown in Fig. 2, a mobile agent
(4) embedding a compound service migrates from its origin to a provider’s agent plat-
form, and subsequently accesses services (2) within a locally running application server
to fulfill its task. By registering the compound service within the agent platform this
service with added value is provided as web service, not only to its owner, but to every



regular web service client (◦). This scenario distinguishes the following three entities
within a network community:

Provider A provider allows access to locally hosted resources through web services,
implemented as components within a regular application server. Furthermore, he
runs a mobile agent platform which accepts agents from community members and
grants them local access to the provided web services.

Community Member The community memberinvests his knowledge to implement
a service with added value which is based on functionality of the provider’s web
services. Embedding this compound service in a mobile agent, and subsequently
migrating this agent to the provider’s agent platform, it is able to benefit from the
optimized access to local services.

Regular client If the community member’s agent in turn registers the API for its com-
pound service within the agent platform, this service can subsequently be invoked
as web service by the community member and otherregular clientsthrough the
agent platform’s web service engine.

In this provider-based network community (e.g. a gaming platform), a community
member is able to improve the provider’s web service framework for himself and other
community members. The community member does not need to setup its own public
web service framework to provide his services with added value. The compound service
further benefits of local access to resources. The provider is still able to select and
encapsulate incoming agents by enforcing its security policy through the agent platform.
Thereby, he benefits of community members improving the web service framework he
provides, and is in control of the additional features at the same time.

3 Related Work

The work described in this paper has been strongly influenced by resp. is evolved
from several existing contributions to the field, whereas the following discusses ex-
isting frameworks which build upon static agent systems, and approaches integrating
web services and mobile agents.

Most of the frameworks based onstatic agent systems[8, 3, 11, 6] presuppose FIPA-
compliant communication between agents, and a FIPA-compliant mechanism for ser-
vice description and discovery (cf. [5, 4]). Since interaction is based on the exchange of
messages, all the approaches lead to components (a generic gateway, or single wrapper
agents) which map incoming FIPA-ACL messages and service register/deregister/search
requests into messages of the corresponding web service protocol, and vice versa. These
components further have to bridge the gap between asynchronous behavior of FIPA-
ACL, and synchronous behavior of SOAP-based service invocation. Except the latest
and most advanced framework described by Greenwood et al., which aims to implement
all mechanisms for bidirectional system integration in one single gateway component,
the approaches need manual configuration steps for each integration process, which is
partly automated but cannot be done during runtime.

In contrast, the existing contributions based onmobile agent systemshave more di-
verse goals, and thereby do not completely follow transparent integration of agents and



web services. While some approaches make use of specific advantages of mobile agents
in the field of load balancing [1], or the efficient and concurrent task execution in dis-
tributed and mobile environments [9], others focus on dynamic and efficient selection
of web services through mobile agents [10]. Instead of integrating web service support
into an existent mobile agent system, Cooney et al. extended the .NET framework for
web services with the ability of service migration [2] based on a rudimentary agent
mobility paradigm. Since they mainly created a new service platform from the scratch,
there was barely obligation to map existing mechanisms for service description and
invocation to the web service world. The realization of mobile web services described
in [7] represents a high level approach of system integration. Due to an interpreter agent
encapsulating web service logic, this approach is mostly independent of the underlying
mobile agent system and the given interaction paradigms. As consequence, existing ser-
vices of the underlying system cannot be reused transparently as web services, whereas
the developer of mobile web services has a new workflow based programming model
to implement composite services.

The above summarized frameworks dealing with mobile agent systems, either en-
rich the web service world with specific advantages of mobile agent technology, or bind
the mobile agent world to web service technology. In contrast, the WSE architecture
aims to provide bidirectional integration of both technologies in a seamless way.

4 Architecture

Derived from [6], the followingassumptionswere made when designing the web ser-
vice engine:

– The agent runtime environment provides mechanisms for service description, invo-
cation, and discovery, which are based on direct (or remote) method invocation in
Java resp. sharing of Java-APIs as service interfaces.

– All web services are assumed to use the standard web service stack consisting of
WSDL for service description, SOAP for service invocation, and UDDI for service
discovery.

– The web service engine is transparently integrated into the agent server by means
of an extended service management layer, whichimplicitly transforms locally reg-
istered services into web services accessible from external web service clients (and
vice versa).

– The web service engine is further visible as service within the agent server, which
canexplicitly be used by other services and agents (to search for and invoke resp.
to register web services).

– The web service engine is visible from web service clients as gateway supporting
various transport protocols (mainly HTTP and HTTPS). Service endpoints within
this gateway are dynamically generated and publish via UDDI.

– If the agent system supports semantic agent service descriptions, these are available
to the web service engine.

In case of SeMoA, the only mean of interaction between mobile agents and/or ser-
vices is based on direct method invocation through shared Java interfaces: Services are



registered locally as entities within a hierarchical namespace (the serviceenvironment).
Thus, a service requester searches for an appropriate service interface within a defined
sub hierarchy of the environment. If successful, a Java object is returned which imple-
ments the given interface. As consequence no asynchronous protocol behavior has to be
mapped to the synchronous behavior of SOAP. Since automated runtime integration of
web services is provided, the framework has to cope with optimized and dynamic web
service stub provisioning, on the other hand.

The proposed solution to implement theWeb Service Engine(WSE) as introduced
above covers several individual components and a service management layer which
can easily be adapted and plugged into the existing service management of the specific
mobile agent platform:

Stub Generator SOAP messages transported through the network as result of a web
service invocation are typically exchanged between a client and a server stub. With
respect to the WSE architecture, the server stub processes incoming messages and
triggers the associated service object by means of direct method invocation. Vice
versa, the client implements the service’s interface and starts communication with
the associated server stub, upon local method invocation. Thereby, the task of the
stub generatoris twofold. On the server side, it extracts the specific Java inter-
face from a given service object, automatically generates a corresponding syntactic
WSDL description and creates a new server stub, which is then associated with the
service object. On the client side, it transforms a given WSDL description into the
corresponding Java interface, and creates a client stub implementing this interface.
To realize automated and transparent integration for Java-based systems, the stub
generator must be able to dynamically generate new stub objects during runtime.

Web Service GatewayServer stubs created by the stub generator have to be exposed
by means of web service endpoints accessible over the network. Theweb service
gatewaythereby implements the specific transport protocols and serves as both,
web server enabling access to server stubs (e.g. over HTTP and HTTPS) as well
as web client used by client stubs as transport layer for the transmission of SOAP
messages.

Registry Service To make agent services visible by means of web service discovery,
the registry servicetransforms WSDL descriptions created by the stub generator
from a given service object into appropriate UDDI business entities. These busi-
ness entities are subsequently be registered at a UDDI-compliant registry. Further-
more, this service can be used to search for a web service which is syntactically
compatible to a given Java interface.

WSE Service TheWSE Servicewraps the above described functionality and provides
it via a simple interface which canexplicitly be used by mobile agents to either
search for web services, or to deploy and undeploy encapsulated service objects.
In both cases, the agent does not need to know anything about the traditional web
service stack: deployment is done by providing a Java object implementing an ar-
bitrary Java interface which is automatically exposed by means of a web service,
then; a search request with a given Java interface directly returns the reference to a
client stub implementing this interface, if successful.



Service Management LayerTheservice management layertransparently activates the
above described processes by automatically forwarding appropriate requests (to
register or lookup an agent service within the agent infrastructure) to the WSE
service. Since web service deployment and undeployment is subsequently done
implicitly, the administrator of the local agent server can configure this layer in
advance, and select the types of services to automatically expose as web services.

Acknowledgements

This paper was written while the author was working within SicAri, a project funded
by the German Ministry of Education and Research. The web service engine has been
implemented in cooperation with Jan Oetting, usd.de ag, Germany.

References

1. J. Cao, Y. Sun, Y. Wang, and S.K. Das. Scalable Load Balancing on Distributed Web Servers
Using Mobile Agents.Journal on Parallel and Distributed Computing, 63(10):996–1005,
October 2003. ISSN:0743-7315.

2. Dominic Cooney and Paul Roe. Mobile Agents Make for Flexible Web Services. InPro-
ceedings of The Ninth Australian World Wide Web Conference, Quensland, Australia, July
2003.

3. Jonathan Dale, Akos Hajnal, Martin Kernland, and Laszlo Zsolt Varga. Integrating Web Ser-
vices into Agentcities Recommendation. Technical report, Agentcities Task Force, Novem-
ber 2003.

4. FIPA. FIPA Agent Discovery Service Specification. Preliminary FIPA document
PC00095A, Version 1.2e, Foundation for Intelligent Physical Agents, October 2003.
http://www.fipa.org/specs/fipa00095.

5. FIPA. FIPA Agent Management Specification. Standard FIPA document SC00023K, Foun-
dation for Intelligent Physical Agents, March 2004. http://www.fipa.org/specs/fipa00023.

6. Dominic Greenwood and Monique Calisti. Engineering Web Service - Agent Integration. In
IEEE International Conference on Systems, Man and Cybernetics (SMC 2004), The Hague,
The Netherlands, October 2004.

7. Fuyuki Ishikawa, Nobukazu Yoshioka, Yasuyuki Tahara, and Shinichi Honiden. Toward Syn-
thesis of Web Services and Mobile Agents. InProceedings of the AAMAS’2004 Workshop
on Web Services and Agent-based Engineering (WSABE), New York, USA, July 2004.

8. M. Lyell, L. Rosen, M. Casagni-Simkins, and D. Norris. On Software Agents and Web
Services: Usage and Design Concepts and Issues. InThe 1st International Workshop on Web
Services and Agent-based Engineering, Sydney, Australia, July 2003.

9. Zakaria Maamar, Quan Z. Sheng, and Boualem Benatallah. Interleaving Web Services Com-
position and Execution - Using Software Agents and Delegation. InThe 1st International
Workshop on Web Services and Agent-based Engineering, Sydney, Australia, July 2003.

10. Amir Padovitz, Shonali Krishnaswamy, and Seng Wai Loke. Towards Efficient Selection
of Web Services. InThe 1st International Workshop on Web Services and Agent-based
Engineering, Sydney, Australia, July 2003.

11. Laszlo Zsolt Varga, Akos Hajnal, and Zsolt Werner. An Agent Based Approach for Migrating
Web Services to Semantic Web Services. In11th International Conference on Artificial Intel-
ligence: Methodology, Systems and Applications (AIMSA 2004), Lecture Notes in Computer
Science, pages 371–380, Varna, Bulgaria, September 2004. Springer Verlag Heidelberg.


