
A Formal Approach for Interoperability between

Mobile Agent Systems and Component Based Architectures

Ulrich Pinsdorf

Fraunhofer Institute for Computer Graphics

Fraunhoferstraße 5, 64283 Darmstadt, Germany

ulrich.pinsdorf@igd.fraunhofer.de

Abstract

We present an algorithm that allows to cut a component

from a component based system and transplant it into a mo-

bile agent system. We refer to this process as grafting. The

overall goal is to run grafted components in a new execu-

tion environment. The approach is generic as it brings the

target system into a position to execute any instance of the

grafted component type. Moreover it applies for any two

systems, not only for component based and agent systems.

The approach was tested by grafting OSGi bundles into the

mobile agent system SEMOA.

1 Introduction

Mobile agents can be seen as tuple of program code, data

and execution state, which migrates from one agent server �

an agent execution environment � to another. Accessing re-

sources locally enables an agent to collect, process and pub-

lish data ef�ciently within a network. Mobile agents push

the �exibility of distributed systems to their limits since not

only computations are distributed dynamically, but also the

code that performs them. They may roam a network, seek

information, and carry out tasks on behalf of their senders

autonomously. Hence, mobile agents offer great bene�ts to

applications in networks by adding client-side intelligence

and functionality to server-side services.

Nearly each mobile agent system is founded on research

activities with a speci�c focus and therefor follows a dif-

ferent design goal. Hence, each mobile agent system offers

different strengths, such as security, scalability, enhanced

agent behavior, ef�cient migration, etc. Unfortunately mo-

bile agent technology lacks interoperability between differ-

ent systems, which prevents the technology from reaching

�critical mass´´ for widespread application. We think that

opening mobile agent systems both for other mobile agent

systems as well as for any component (such as Java Enter-

prise Beans, OSGi bundles, etc.) will push them into posi-

tion to reach a higher impact and to bring their strengths on

the market.

We de�ne run-time interoperability as the ability of a

(mobile agent) system to start any software component of

a different component-based system and act as full replace-

ment for the component's original run-time environment.

That means that a software component running in an inter-

operable system may behave as usual without any modi�-

cations.

In this paper we show a way to take a software compo-

nent from a component based system and transplant it into

an agent system. The process includes modi�cations at the

target agent system which eables it henceforth to execute

any component of the speci�c type. We refer to the trans-

planting process as grafting. The component based system

may be a second agent system just as a general component-

based system. Altough our appoach is stated in a formal

manner, it is derived from practical experience [22]. The

ideas in this paper may not only be applied to mobile agent

systems but to any two component based system, which de-

pends on dynamically loaded code.

In section 2 we give an overview on related work both of

mobile agent interoperability and the related area of object

graph analysis. We present object graph analysis in sec-

tion 3. This is only a short summary of the underlying the-

ory, but enough to understand the formal description of the

grafting process. Section 4 formally describes the grafting

process which allows the transplantation of components. In

section 5 we present experiences we made with integration

of OSGi bundles within the agent platform SEMOA using

the formal algorithm. Finally, section 6 concludes the ap-

proach and the lessons learned.

2 Related Work

In this section we give an overviewon prior art. We focus

on the areas of mobile agent interoperablity and on object

graph analysis. The latter is a technique for reverse engi-

neering of object-oriented systems.

2.1 Mobile agent interoperability

In the area of mobile agent interoperability only a small

number efforts have taken place so far. A well known ap-

proach is the MASIF proposal [19] by Milojicic et al which

suggests a standardization for an agent transport protocol.

Although the publication is one of the earliest and best

known in this area the document did not have much pub-

lic scrutiny yet. The platforms SOMA [33] and Grasshop-

per [15] are the only known mobile agent plattforms that

implement the MASIF proposal.

FIPA (Foundation for Intelligent Physical Agents) is also

active in the standardization of agent mobility issues [8], but

this particular thread of FIPA's work focuses on a high level

of abstraction, e.g. communication protocols, ontologiesm

etc. However, only the FIPA standardization on agent com-

munication issues [9] found broad attention.

Bellavista et al, the developers of the SOMA mobile

agent system, suggest an approach on mobile agent inter-

operability [1, 2] which is based on the CORBA IIOP pro-

tocol [6]. SOMA platforms register themselves as CORBA

servers and offer services to CORBA clients by means of

IIOP protocol. This approach relies on communication does

not establish run-time interoperability.

So beside our own publication [22] we are aware of only

two publications which focus on the aspect of executing

agents in foreign environments. Magnin et al. suggest an

standardized adoption layer between agent and agent sys-

tem [18]. This binds developers of interoperable agents to

the API of the adoption layer. They can neither take advan-

tages from the agent's programming model, nor from the

server environment. The publication of Grimstrup et al [13]

achieved basic interoperability between four agent systems

by means of a common interoperability API an a number

of translators from and to each native platform API. This in

fact bears the same problem as Magnins approach.

In conclusion it is fair to say that existing standardization

efforts � if available � have not yet shown to be effective to

provide actual interoperability among systems for mobile

agents. Hence, rather than following the top down approach

to interoperability by means of standards, we chose to take

a bottom up approach based on voluntary interoperability

with other systems for mobile agents. We designed the sys-

tem SEMOA [23, 10] in a way that it facilitates the task to

provide true interoperability with other (agent) systems.

2.2 Object graph analysis

Our work also touches the area of object-oriented soft-

ware engineering, and object-oriented reverse engineering.

In these areas a large number of publications are available,

[4, 16, 25] give a good overview.

In the area of object-oriented analysis a publication on

object graph analysis by Spiegel [26, 27] �ts to our ap-

proach very well. He uses object graphs for separation and

distribution of software.

A number of projects have the goal to distribute mono-

lithic software programs dynamically. The foremost promi-

nent representative are the projects Doorastha [7], J-

Orchestra [32], and JavaParty [21]. All of which analyze

given code, part it, and distribute it to different hosts. This

allows parallel computing and more ef�cient resources us-

age.

3 Object Graphs

The approach presented in this paper bases on static ob-

ject graphs. An object graph is a formal representation of

objects that are expected to exist during the run-time of a

program1. As we will see, the object graphs and their ac-

cording class graphs enable us to build a formal model to

establish interoperability on implementation level between

two systems that are mutual unknown to each other. The

reason, why we start the code inspection with objet graphs

and not with class graphs is that mobile agent system make

intensivly use of dynamically loaded code. Thatfor we have

to consider the estimated object graph and derive the class

graph from that.

The nodes of a object graph represent the objects. Be-

tween objects one can distinguish three different kinds of

edges: creation edges, reference edges and usage edges. Be-

tween instantiated objects we can distinguish between dif-

ferent relations:

� an object a creates an object b if the the statement

which allocates b is executed in the context of object

a;

� an object a references an object b if, at any time during

execution, a reference to b appears in the context of a

(either as a �eld, variable, or parameter, or as the actual

value of an expression);

� an object a uses an object b if a invokes any methods

of accesses any �eld of b.

We introduce a notation based on graphs in Table 1. It

is an extention of the notation Spiegel gives in [26]. The

object graph of an object oriented system consists of run-

time objects (nodes) and their relations (edges). Applying

1We assume that this program was designed and implemented in an

object-oriented programming language.

G Static object graph

� Class graph

O;S; T Set of objects

C Set of classes

E Set of edges between objects

E Set of edges between classes

a; b; c; : : : Instantiated objects

�; �; ; : : : Object types (classes)

jOj; jAj Mightiness of the given set

(a; b) Relation between objects a and b

(�; �) Relation between types � and �

� = � [a] Type of a

C = � [O] Type of all elements in O

Table 1. Summary of notation for static object

graphs and static class graphs.

the notation, we could describe an object graph as:

G = hO; Ei (1)

E = Ec [Er [Eu

O is the set of objects that exists during run-time, and Ec,

Er, and Eu are creation edges, reference edges, and usage

edges. We write (a; b) if an object a has a relation to an

object b.

Since every object has a speci�c type there is a surjective

mapping between an object graphG and a class graph �. A

class graph consists of a set of object types/classes (nodes)

with dependencies between them (edges). An object graph

G has a corresponding class graph �:

� = hC;Ei (2)

E = Ee [Ei [Eu

C is the set of classes C. Ee, Ei, and Eu denote inheri-

tance edges2, implementation edges, and usage edges. The

mapping between object graph G and class graph � is as

follows:

8x : x 2 O) 9 � : � 2 C ^ � = � [x] (3)

8(a; b) : (a; b) 2 E) 9 (�; �) : (�; �) 2 E ^ (4)

� = � [a] ^ � = � [b]

In section 4 we use this theory for describing the graft-

ing process. Finally, in section 5 we show how the formal

approach had been applied for an adoption of OSGi bundles

within the agent platform SEMOA.

4 Grafting Process

In this section we present an algorithm that allows to cut

a component from an component based system and adopt

2The index e stands for extends.

it in an mobile agent system. We refer to this process as

grafting, the component's home system is called alien sys-

tem and its runtime environment target system. The overall

goal is to execute grafted components in its new environ-

ment. The approach itself is generic as it brings the target

system into a position to execute any component designed

for the alien system. Moreover it applies for any two sys-

tems, not only for component based and agent systems. It

is important to understand that we do not only a cutting but

also an analyzing of the alien system. Since we are inter-

ested in the general interaction methods between an alien

component and its environment, the grafting process intro-

duced in this section will likely transplant more than just the

component classes.

The general process consists of three steps:

1. analyzing the alien system,

2. cutting-out of the alien component, and

3. adoption within the target system.

We describe those three steps in the following sections.

Let G be the object graph and � be the class graph of the

alien system including the component. Further let � be the

starting3 class of an alien component which shall be grafted.

Then a is the according starting object for one speci�c com-

ponent instantiation. We write a = � [�].

4.1 First step: Analyzing

This is the most dif�cult step. In order to cut a out of

G (and likewise � out of �) we have to determine a sub-

graph G0
� G with G0 = hO0

; E
0
i, E 0

� E and O0
� O. In

addition G0 shall be bound to the following restrictions

1. a 2 O0,

2. O0 includes all objects which are essential for the

grafted component's functionality, and

3. jG0
j is minimal.

The latter condition guarantees an optimal cut-out with

maximal re-using of component classes and a minimum

number of references to be cut. In other words, the essential

functionality shall be cut out whereas the supporting system

shall be left behind.

For determine G0 we calculate the transitive hull in G

of all objects used by the alien component, starting at a.

Figure 1 shows the algorithm for �nding G0.

After initialization of the sets O0, S (stack), and E 0, we

begin at object a by pushing it on top of the empty stack S.

3The component itself may consist of a number of classes, but there is

always one speci�c class that is used for instantiating or representing the

component.

S fag

O
0
 ;

E
0
 ;

while S 6= ; do

x pop(S)

O
0
 O

0
[x

foreach (x; d) 2 E do

if d =2 O
0
^ � [d] =2 T then

push(S,v)

push(E ,(x; d))

endif

done

done

G
0
 < O

0
; E

0
>

Figure 1. Search for the transitive hull of all

necessary objects of a.

We check successively all relations starting at object called

x which is the actual top of the stack. For each relation

starting at x we check whether the destination object d is

not already in the object collectionO0 and whether the class

of d belongs to a set of terminal classes denoted as T . The

�rst constraint helps to deal with circles in the object graph.

The set of terminal classes T in the second constraint is pre-

de�ned, and we describe them in detail in the next section.

Whenever the algorithm encounters such a class it stops fur-

ther inspection in this direction. Each object x that passes

these constraints belong to the transitive hull and is pushed

on the stack S for later inspection. We remember the in-

spected class in O0 and the edge (x; d) in E 0. These steps

are repeated as long as at least one class resides on the stack

S. After S is consumed O0 holds all objects that are some-

what essential for a. G0 is simply the graph resulting in the

combination of objects nodes O0 and their relations E 0.

This algorithm vitally depends on the set of terminal

class types T since this set determines which objects are

essential and eases an cutting-out. Thus the de�nition of ter-

minal object types is one of the key points in our approach.

We de�ne4 classes belonging to the following class types as

terminal classes:

� Interfaces classes de�ne the accessors to a class with-

out de�ning its functionality. Interfaces represent the

ideal terminal classes since the usage of an interface

method is well-de�ned but not bound to an implemen-

tation.

� Abstract classes are un-instantiateable classes. They

usually act as base classes which provide on one hand

4For a language speci�c de�nition we recommend the speci�cations of

the programming language, e.g. for Java [12].

a common functionality, and on the other hand leave

certain methods intentionally blank.

� Standard classes that constitute the extent of each

programming language. Given that they are also avail-

able for the adapting platforms they are not essential

for the agent.

� Dynamic loaded classes are commonly used for load-

ing drivers at run-time. Usually it is hard to backtrace

the object graph at dynamically loaded classes.

� Isolated helper classes without references to other

classes c =2 T can often be reused without modi�ca-

tion.

� Native anchored classes are classes which depend on

native code, e.g. has native methods.

� Modules typically use classes that resemble entry

points to self-contained subsystems. Such modules

need no special adaption and can be used as a whole.

In other words, modules that can be treated as a black

box and need not belong to the agent itself.

Whenever a class inside the transitive hull references a

class belonging to a classes type above, we stop further in-

spection in this direction. This leads to a minimal object

graph G0.

O
0
� O n fx 2 O : � [x] 2 Tg (5)

Hence, the cardinality of T andO0 depend from each other:

jO
0
j �

1

jT j
(6)

Thus a maximal jT j concludes in a minimal jO0
j and a mini-

mal jG0
j as demanded above. In contrast the set of terminals

also speci�es the objects that are potentially important for

the functionality of the agent. If T contains too much ele-

ments it would exclude objects from O0 that are necessary

for a.

What we have so far is a set of objects that are related to

the agent base class in a way that we have to import them

along with the agent in oder to guarantee the agent's func-

tionality.

4.2 Second step: Cuttingout

In order to make a "clean" cut-out, we need a cutting line

in � including � [a] and its essential helper classes. This line

can be deduced from the object graph G0, but �rst we need

the class graph �.

The object graph G0 can be transformed into the corre-

sponding class graph �0 as shown in equations (2) to (4).

The algorithm's selection condition guarantees that

� \ T = ; (7)

In other words the cutting-line runs entirely along those ref-

erences reaching outward from the grafted component to

terminal classes:

�; � 2 � : � 2 �0
^ � 2 T (8)

This has an important consequence for the grafting pro-

cess. Since those classes � which is fact were only de�ned

to be terminal � are initially designed to interact within the

alien system, the target system has to satisfy their commu-

nicative needs. This leads us directly to the step of implant-

ing.

4.3 Third step: Implanting

In order to execute the alien component properly, the tar-

get system has to act as adequate replacement for the re-

maining alien system � n�0. More precisely, the target sys-

tem has to intercept any outgoing communication of alien

classes, generate an answer according to the target systems

internal management, and pass it back to the alien compo-

nent.

This leads to the advisory that terminal classes should be

connected by means of intermediate classes which ensure

the communication between both different systems. These

intermediate classes could also perform a translation of pa-

rameters or break a single method call into a number of calls

for the target system and vice versa.

Efforts to realize these intermediates are very manage-

able since they simply invoke functionality of the target sys-

tem (e.g. access to data sources, component management,

communication, etc.) which are usually well-known by the

integrator.

We give two examples on how to realize intermediate

classes. First, the most common type of terminal classes is

the interface, which de�nes a well-de�ned functionality but

do not provide an implementation. Hence, the adaption en-

vironment could implement any interface in �0 and deliver

the expected functionality backed by the target system. Sec-

ond, inheritance from abstract classes is a way to integrate

this type of terminal classes within the target system. De-

pending on the actual situation adaption of other terminal

class types is possible in a similar way.

An additional issue is that the target system has to supply

a way to distinguish the different types of supported com-

ponents � their native component type as well as a number

of supported alien systems � and accordingly set up differ-

ent types of adaption environments. Each of those envi-

ronments has to satisfy the needs of one speci�c compo-

nent type. Or in other words, each adaption environment

fakes a speci�c alien system. In a earlier publication [22]

we coined the term lifecycle5 for those environments and

5The term lifecycle was chosen, because they essentially establish a

suggested a pattern for handling different kind of lifecycles.

When a platform supports more than one type of adaption

it becomes a problem to decide which kind of lifecycle to

choose for an actual starting-up component. Thus we sug-

gest the lifecycle registry which holds all types of supported

lifecycles. Once, the component is admitted to the system it

is passed to a lifecycle registry, which passes it subsequently

to all registered lifecycle factories until a factory signals that

it is willing to handle the agent's class. This factory (see

also [11] for an introduction to the factory pattern) gener-

ates a lifecycle instance that can handle the component, and

wraps around it. The lifecycle instance translates between

SEMOA's native lifecycle and the lifecycle of the alien sys-

tem. In particular, it instantiates all necessary components

that make the component believe that it is running on its

native system.

5 Experiences

The grafting process had been successfully tested with

a number of alien agent system. SEMOA provides a suc-

cessful integration for Aglets [17], Jade [3], and Tracy [5]

agents. After that we turned to general component-based

systems such as OSGi.

OSGi [31, 20] stands forOpen Standard Gateway Initia-

tive and is a well-established standard for component based

systems in Java [12, 29, 30]. The consortium consists of 40

international members including Sun Microsystems, IBM,

Motorola, Nokia, Toshiba, Deutsche Telekom, and others.

Its intention is an open service platform for home automa-

tion and in-car systems. The alliance is open for new mem-

bers and contributors.

The standard itself consists of a document part which

describes the requirements for an OSGi-compatible service

platform, and a software part providing a large framework

of Java interfaces. In OSGi terms, independent components

are called bundles, which come along as JAR �les [28]

and have to implement a small subset of OSGi interfaces.

Each bundle provides a distinct functionality and may im-

port other bundles for assistance. After startup of a bundle

within its native service platform a call-back hook is set,

that allows interaction with the surrounding system, again

by means of interfaces. The service platform realizes the

bundle management and enables requesting, importing and

interaction between bundles. There are a number of service

platform implementations available on the Internet. A well-

known project we used for our adaption is the Open Service

Container Architecture (OSCAR) [14].

We chose for our concrete analysis a standard bundle

shipped with OSCAR (shell bundle). The grafting process

started at the bundles activator class. Bundle activators can

correspondence between the lifecycles of the alien system and the native

lifecycle.

be considered as entry point for bundles, for they are the

�rst to start and invoke all further actions. From here we

determined all essential objects by calculating the transitive

hull as shown above. The consequent use of interfaces de-

�ned by the OSGi standard emerged as ideal prerequisite for

the grafting process, since interfaces are de�ned as terminal

class type. The set of essential classes was small and �t to

the set of classes contained in the bundle's JAR �le. This

is an indices for the excellent separation of bundle and ser-

vice platform in OSGi. After cutting-out we implemented

helper classes which provide the necessary interfaces and

act as intermediate between SEMOA and OSGi. During

our recent grafting processes with different agent systems

we gained some experience and developed an interoperabil-

ity layer which eases interaction of those intermediate life-

cycle classes in SEMOA[22].

The main challenge was the integration of the expected

bundle management within SEMOA's native component

management. SEMOA uses for this sake a global hierar-

chical namespace, where all agents, services, transport han-

dlers, etc. are registered under a unique path (refer [24]

for more details). Bundles where simply registered within

this namespace and could be looked easily up by any other

OSGi lifecycle. Furthermore a number of small functional-

ities had to be implemented, e.g. a dictionary for property

values or a mechanism for event dispatching. We tested our

implementation with a number of free OSGi components

and found all requirements ful�lled. The SeMoA platform

is now capable to execute any OSGi bundle.

Our experiments showed that the formal approach

proved as applicable for a real grafting process. However,

a well designed and documented alien system helps a lot to

achieve interoperability in a short amount of time. Espe-

cially the well documented semantic of interface methods

were of great help. The grafting process was performed

manually, without any implementation of the presented al-

gorithm. Learning from these experience we think that a

semi-automatic cutting-out is possible. The implanting step

relies on programming skill and experience in system de-

signed and will stay an act of creativity, which probably

prevents it from automation.

6 Conclusions

In this paper, we presented a formal approach for run-

time interoperability between mobile agent systems and

component based systems. We described a process for

grafting components taken from one system into a second

system. This is based on voluntary interoperability between

selected agent systems, rather than a top-down approach

driven by standards. The approach itself is generic and may

be applied to any kind of object-oriented software system.

In particular, we presented how static object graph anal-

ysis helps to create the estimated run-time object graph. We

suggested an algorithm for separating essential from non-

essential objects starting at the component's main object.

The determined border line can be applied to the corre-

sponding class graph, which helps to cut out the compo-

nent from its surrounding system. Implanting the compo-

nent within an agent system is possible by taking advantage

from intermediate classes. They manage the translation of

method calls and lifecycle states between component and

the new hosting system.

Once the integration was achieved for a particular com-

ponent, the target system is able to execute any other com-

ponent of the speci�c type. Another important key feature

of this approach is that the component may pro�t from the

strengths of its hosting system and vice versa. E.g., when

the target platform provides migration support or special se-

curity features, the grafted component type may take ad-

vantage from that. This allows the design of very �exible

systems by bringing together the host's and component's

bene�ts.

In the course of pursuing interoperability between dif-

ferent mobile agent systems we gained considerable insight

both in the particularities of Java as well as in the dos and

don'ts of component-based system design in general and

mobile agent based system design in particular.

At the time of writing, our work is far from complete,

yet we can already demonstrate a successful integration of

Aglets, Jade, and Tracy agents. OSGi is the �rst component

framework we have adopted. Currently we examine possi-

bilities for a semi-automate integration of other component

based systems.

References

[1] P. Bellavista, Antonio Corradi, and Cesare Stefanelli.

CORBA solutions for interoperability in mobile agent

environments. In Proceedings of the 2nd Interna-

tional Symposium on Distributed Objects & Applications

(DOA'00), pages 283�292, Antwerp, Belgium, September

21-23 2000. IEEE Computer Society Press. Available at

URL http://www.computer.org/proceedings/

doa/0819/08190283abs.htm.

[2] P. Bellavista, A. Corradi, and C. Stefanelli. Protection and

interoperability for mobile agents: a secure and open pro-

gramming environments. In IEICE Transactions on Com-

munication, Special Issue on Autonomous and Decentral-

ized Systems, volume E83-B, pages 961�972. The Institue

of Electronics, Information and Communication Engineers,

May 2000. Available at URL.

[3] F. Bellifemine, A. Poggi, and G. Rimassa. Jade pro-

grammers guide, June 2000. Available at URL http:

//sharon.cselt.it/projects/jade.

[4] G. Booch. Object-Oriented Analysis and Design with Ap-

plication. Addison-Wesley Publishing Co., 2nd edition,

September 1993. ISBN 0805353402.

[5] P. Braun, C. Erfurth, and W. R. Rossak. An intro-

duction to the Tracy mobile agent system. Techni-

cal Report No. 2000/24, Friedrich Schiller University of

Jena, Computer Science Department, September 2000.

Available at URL ftp://ftp.minet.uni-jena.de/

ips/braun/bericht-00-24.pdf.

[6] CORBA 2.6 speci�cation. Technical Report for-

mal/20011235, Object Management Group, 2001. Available

at URL http://www.omg.org.

[7] M. Dahm. The Doorastha system. Technical Report B-

1-2000, Institut für Informatik, Freie Universität Berlin,

Takusstraße 9, 14195 Berlin, Germany, May 2000. Available

at URL http://www.inf.fu-berlin.de/~dahm/

doorastha/.

[8] FIPA agent management support for mobility speci�ca-

tion. FIPA document PC00087A, Foundation for Intel-

ligent Physical Agents, Jun 2000. Available from URL

http://www.fipa.org/specs/00087/.

[9] FIPA ACL message structure speci�cation. FIPA document

XC00061E, Foundation for Intelligent Physical Agents, Aug

2001. Available from URL http://www.fipa.org/

specs/00061/.

[10] Fraunhofer-IGD. SeMoA � Secure Mobile Agents Project.

Website. Available at URL http://www.semoa.org/.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vissides. Design

Patterns. Addison Wesley Longman Publishing Co., De-

cember 1994. ISBN 0201633612.

[12] J. Gosling, B. Joy, and G. L. Steele. The Java Language

Speci�cation. The Java Series. Addison-Wesley, Reading,

MA, USA, 1996. ISBN 0-201-63451-1.

[13] A. Grimstrup, R. S. Gray, D. Kotz, T. Cowin, G. Hill,

N. Suri, D. Chaćon, and M. Hofmann. Write once, move

anywhere: Toward dynamic interoperability of mobile agent

systems. Technical Report TR2001-411, Dartmouth Col-

lege, Compzuter Science, Hanover/NH, USA, July 2001.

Available at URL http://www.cs.dartmouth.edu/

reports/TR2001-411/.

[14] R. S. Hall. OSCAR � open service container architec-

ture. Website. Available at URL http://oscar-osgi.

sourceforge.net/.

[15] IKV++ Technologies AG. Grasshopper2. Website. Avail-

able at URL http://www.grasshopper.de/.

[16] I. Jacobson, G. Booch, and J. Rambaugh. The Objectory

Software Developement Process. Addison Wesley Long-

man, 1998.

[17] D. B. Lange and M. Oshima. Programming and Deploying

Java Mobile Agents With Aglets. Peachpit Press, September

1998. ISBN 0201325829.

[18] L. Magnin, V. T. Pham, A. Dury, N. Besson, and

A. Thiefaine. Our GUEST agents are welcome to your agent

platforms. Submitted for publication.

[19] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Co-

vaci, B. Friedman, K. Kosaka, D. Lange, K. Omo, M. Os-

hima, C. Tham, S. Virdhagriswaran, and J. White. MASIF

� The OMG Mobile Agent System Interoperability Facil-

ity. In K. Rothermel and F. Hohl, editors, Proceedings

of the Second International Workshop on Mobile Agents

(MA '98), volume 1477 of Lecture Notes in Computer

Science, pages 50�67. Springer Verlag, Berlin Heidelberg,

September 1998. The MASIF speci�cation is available at

URL http://www.fokus.gmd.de/research/cc/

ecco/masif/doc/97-10-05.pdf.
[20] OSGi Alliance � home. Website. available at URL http:

//www.osgi.org/.
[21] M. Phillippsen and M. Zenger. JavaParty � transparent re-

mote objects in Java. Concurrency: Practice and Experi-

ence, 9(11):1225�1242, November 1997.
[22] U. Pinsdorf and V. Roth. Mobile Agent Interoperability

Patterns and Practice. In Proceedings of Ninth IEEE In-

ternational Conference and Workshop on the Engineering

of Computer-Based Systems (ECBS 2002), pages 238�244,

University of Lund, Lund, Sweden, April 2002. Institute of

Electrical and Electronics Engineers, IEEE Computer Soci-

ety Press. ISBN 0-7695-1549-5.
[23] V. Roth and M. Jalali. Concepts and architecture of a

security-centric mobile agent server. In Proc. Fifth In-

ternational Symposium on Autonomous Decentralized Sys-

tems (ISADS 2001), pages 435�442, Dallas, Texas, U.S.A.,

March 2001. IEEE Computer Society. ISBN 0-7695-1065-

5.
[24] V. Roth, U. Pinsdorf, J. Peters, P. Kabus, and R. Hartmann.

SeMoA Developer's Guide. Fraunhofer Institute for Com-

puter Graphics, Fraunhoferstraße 5, 64289 Darmstadt, Ger-

many. Shipped with SeMoA software [10]. Locally availabe

in the installation directory at docs/develop.
[25] I. Sommerville. Software Engineering. Addison-

Wesley Publishing Co., 6th edition, August 2000. ISBN

020139815X.
[26] A. Spiegel. Object graph analysis. Technical Report

B-99-11, Freie Universität Berlin, FB Mathematik und

Informatik, Institut für Informatik, July 1999. Avail-

able at URL ftp://ftp,inf.fu-berlin.de/pub/

reports/tr-b-99-11.ps.gz.
[27] A. Spiegel. Ef�cient distribution by static analy-

sis. Unpublished. Available at URL http://www.

inf.fu-berlin.de/~spiegel/eff.ps.gz, Jan-

uary 2000.
[28] Sun Microsystems, Inc. JavaTM Archive (JAR) Fea-

tures. in [30], relative URL: file:/docs/guide/jar/

index.html.
[29] Sun Microsystems, Inc. Java Language Speci�cation,

1998. Available at URL http://java.sun.com/

docs/books/jls/html/index.html.
[30] Sun Microsystems, Inc. JavaTM 2 SDK, Standard Edition,

Version 1.4.1. Website, 2002. Available at URL http:

//java.sun.com/products/jdk1.3/.
[31] The OSGi Alliance. OSGi Service Platform, Release 3.

IOS Press, Nieuwe Hemweg 6B, 1013 BG Amsterdam, The

Netherlands, March 2003. ISBN 1-58603-311-5.
[32] E. Tilevich and Y. Smaragdakis. J-Orchestra: Auto-

matic Java application partitioning. Technical Report

CoC 02-17, Center for Experimental Research in Com-

puter Science, College of Computing, Georgia State Uni-

versity, Altanta, GA 30332, USA, 2002. Available

at URL http://www.cc.gatech.edu/~yannis/

j-orchestra/git-cc-02-17.pdf.
[33] University of Bologna. SOMA. Website. Avail-

able at URL http://www-lia.deis.unibo.it/

Research/SOMA/.

