
Java Security Architecture and Extension in
Practice

Volker Roth
Fraunhofer Institute for Computer Graphics

Rundeturmstrasse 6, 64283 Darmstadt, Germany
Phone +49 6151 155-536, Fax +49 6151 155-499

vroth@igd.fhg.de

November 8, 2001

Abstract

In this article, we report on experiences with the JCA/JCE and exist-
ing Java Security Providers (short: providers) that we drew from build-
ing provider- and algorithm-independent support for PKCS#7 based on the
JCA/JCE. A number of problems came to our attention which were caused by
shortcomings in the JCA and in a number of existing Java Security Providers.
The repetitive pattern of these shortcomings suggests that they are likely of
general interest for those building either providers or software that shall func-
tion independent of particular providers or a particular cryptographic algo-
rithm.

1 Introduction

Sun’s Java has been a success story since its inception, and is at the verge of being
accepted in certain application domains as a “real” alternative to existing program-
ming languages. Java is respected for its platform independence (due to the free
availability of Java Virtual Machines for a number of popular platforms), the dy-
namic loading of classes and for the security features of the language, such as its
bytecode verifier, strong typing and bounds checking.

With the Java Development Kit come a number of core packages that comprise
the basic support of Java. This includes a reference implementation of theJava
Cryptography Architecture(JCA), a framework that attempts to provide a common
interface for accessing basic cryptographic primitives [14]. Such primitives cover
digital signatures, certificates and one–way hash functions.

1

Provider URL/comment
SUN Comes with JDK1.2
SunJCE† http://java.sun.com/security/
CDC http://www.informatik.tu-darmstadt.de/TI/
Bouncy Castle http://www.bouncycastle.org/index.html
Cryptix http://www.cryptix.org/
IAIK http://jcewww.iaik.tu-graz.ac.at/
J/Safe† http://www.rsa.com/
Protekt http://www.forge.com.au/
ABA Cannibalized by Forge/Protekt
Wedgetail http://www.wedgetail.com/
DSTC/JCSI See Wedgetail

Table 1: Examples ofsecurity providerpackages; Providers marked with† are
subject to export control in the United States of America.

This framework is complemented with another, theJava Cryptography Exten-
sion(JCE), which is modeled along the same design principles, and which provides
primitives such as ciphers, key exchange and keyed hash functions (MACs). The
reference implementation of the JCE falls under theDepartment of Commerce Bu-
reau of Export Administrationregulations.1 At present an unhampered version of
the JCE is not made available outside the United States of America. The API doc-
umentation is available, though.2 A number of international companies and organ-
isations produced cleanroom implementations of this API, which are available in
source code outside the United States. These are typically bundled with a number
of cryptographic packages implemented along the lines of JCA and JCE. Table 1
shows a number of suchsecurity providerpackages most of which are available at
the time of writing (some are obsolete).

The goal of JCA/JCE is to provide applications independence of particular
algorithms and of a particular implementation of cryptographic primitives. Ide-
ally, multiple providers should be usable interchangeably and complementing each
other, accessed through a well-defined set of API and wrapper classes that com-
prise the JCA/JCE. No detailed knowledge about the actual provider being used
should be necessary in order to build cryptographically enhanced applications. In
the best of all worlds, applications only need to query for an algorithm name and
desired key length and are able to locate and use this cipher if it is supported by

1http://www.bxa.doc.gov
2Throughout the article, we refer to version 1.2 of the JCE.

2

some installed provider.
Unfortunately, we are not living in the best of all worlds and building industry-

strength crypto-enabled software based on the available providers is problematic.
Problems are caused on the one hand by some shortcomings of the JCA/JCE which
are on the other hand exacerbated by sloppy implementation and interpretation of
the API and implementation guidelines. In the remainder of this article we are
pointing out some hints on how to build providers in an interoperable way and list
some mistakes that should be avoided.

In sect. 2 we outline the scope of applications that we feel should be feasible to
implement based on a provider-independent layer, in particular the JCA and JCE.
We use these ideas in sect. 3 to motivate our discussion of certain mechanisms
which are critical to locating algorithm implementations in the security provider
packages. Section 3 also provides a condensed introduction to the JCA and JCE
architecture and design principles. A more detailed description can be found for
instance in the books of Knudsen [6] and Oaks [7]. First-hand information on the
JCA is found in [14] and the API documents available from Sun. We wrap up the
article in sect. 4.

2 Building on JCA/JCE

Beyond pure cryptography significant effort is required to make applications com-
municate securely. The secured messages as well as the keys and algorithm param-
eters need to be encoded in ways that allow proper decoding and the various alter-
native choices of algorithms and structures must be identified in an unique way. A
number of standards were established with this in mind, notably the PKCS family
of standards which covers but is not limited to RSA key representation and encryp-
tion [13], Diffie-Hellman key agreement [10], password-based encryption [11], the
syntax of cryptographically protected messages [9], the representation of encrypted
private keys [12], and the syntax of certificate requests [8]. The PKCS standards
are defined in terms of ASN.1 [4] and make use of structures and attributes pre-
defined in ITU-T Recommendations X.501 [3] and X.509 [2] which in turn refer
to a vast number of further ISO and ITU standards. Encoding and decoding of the
various structures defined in these standards is governed by another ITU-T Rec-
ommendation, X.690 [5]. Implementing all of these standards leaves programmers
with an impressing amount of work.

Nevertheless, a variety of companies and organizations are doing exactly that
and some of them even provide source code of their implementations. Some of the
standards mentioned above must be dealt with on the level of JCA/JCE providers
(for instance PKCS#1, PKCS#3, PKCS#5, PKCS#8, and X.509 certificates). Oth-

3

JCE/JCA

Provider

PKCS#7, #10, X.501, X.509

ASN.1 API

ASN.1 library

Figure 1: Layers above the JCA/JCE level should be independent of a particu-
lar provider. In order to use new algorithms with the PKCS#7 library, adding an
appropriate provider should suffice.

ers are located above the layer of JCA/JCE (for instance PKCS#7). Yet others
such as the X.509AlgorithmIdentifierare used both by providers and by libraries
built on top of the JCA/JCE. From a software designer’s perspective, an architec-
ture such as the one illustrated in fig. 1 is desirable. In other words, the PKCS#7
implementation should not depend upon a particular provider but use the abstrac-
tions provided by the JCA/JCE. Any implementation that does not live up to these
expectations is either:

• hardwired to a particular provider or

• must return generic ASN.1 structures for which the application has to do the
mapping to JCE/JCA structures.

The first choice is clearly not desirable since the advantages of the JCA/JCE ar-
chitecture are negated and the application becomes dependent on a single provider.
The second choice is inefficient. In order to use new algorithms with a PKCS#7
implementation, adding a new provider which implements said algorithms should
be all there is to do. Ideally, there would be a Java Extension and API for ASN.1
on which both providers and layers atop the JCA/JCE can build. This would spare
providers the efforts of re-implementing subsets of ASN.1 and the Distinguished
Encoding Rules which are the default encoding rules for virtually all opaque rep-
resentations of keys and algorithm parameters in the JCA/JCE.

We would like to emphasize that a truly JCA/JCE integrated imple-
mentation of PKCS#7 and related objects should use the semantics of the
JCA/JCE. An implementation ofAlgorithmIdentifiershould return an instance of

4

java.security.AlgorithmParametersrather than an ASN.1 object; implementations
of PKCS#7SignedDatashould be able to locate a suitableSignatureengine on
their own, and implementations of PKCS#7EncryptedContentInfoshould be able
to decrypt with little more than aRecipientInfoand a private key, to name some
examples.

SignerInfo ::= SEQUENCE {
version Version,
issuerAndSerialNumber IssuerAndSerialNumber,
digestAlgorithm DigestAlgorithmIdentifier,
authenticatedAttributes[0] IMPLICIT Attributes OPTIONAL ,
digestEncryptionAlgorithm DigestEncryptionAlgorithmIdentifier,
encryptedDigest EncryptedDigest,
unauthenticatedAttributes[1] IMPLICIT Attributes OPTIONAL

}

Figure 2: The ASN.1 structureSignerInfofrom PKCS#7 [9]

The key to these features is the way algorithms and structures are identified
throughout the standards we mentioned. This is done by means of a built-in ASN.1
type which is theObject Identifier(OID). An OID is a sequence of integers which
uniquely identifies an entity such as a company, an algorithm, or a data structure.
The common notation for OIDs is to write the succession of its integers separated
by dots. Each successive integer stands for a node in the tree of all registered OIDs.
For instance, RSA Laboratories is registered under OID 1.2.840.113549; starting
with this prefix, RSA is able to define OIDs of its own choosing. For instance, the
PKCS#1 standard is denoted by 1.2.840.113549.1.1 and the RSA algorithm defined
in PKCS#1 is denoted by 1.2.840.113549.1.1.1, both chosen by RSA Laboratories.

Knowing the algorithm being used is frequently not enough. Algorithms such
as symmetric block ciphers in cipher block chaining mode [1] require an initial-
ization vector (IV). Some ciphers support multiple key lengths. Key lengths and
IVs areparametersthat are required for the correct initialization and operation of
such ciphers. For this reason, cryptographic algorithms are identified in X.509 and
the PKCS family of standards by means of anAlgorithmIdentifierwhich contains
the OID of the algorithm in question as well as the parameters, if any. The ASN.1
structure of theAlgorithmIdentifiertype is given in fig. 3.

The PKCS#7SignerInfostructure (shown in fig. 2) utilizes twoAlgorithmI-
dentifiers– one for the digest algorithm which is used to reduce/hash a message
of variable length to a digest value of fixed length, and another for the raw signa-
ture/encryption algorithm which is used to transform the digest. Both jointly define
the signature algorithm. For instance, theDigital Signature Standard(DSS) defines

5

AlgorithmIdentifier ::= SEQUENCE {
algorithm OBJECT IDENTIFIER ,
parametersANY DEFINED BY algorithm OPTIONAL

}

Figure 3: The ASN.1 structureAlgorithmIdentifierfrom X.509 [2]

a way of producing digital signatures based on theSecure Hash Algorithm(SHA)
and theDigital Signature Algorithm(DSA). TheAlgorithmIdentifiersin a Signer-
Info specifying a DSS signature thus contain the OIDs3 1.2.840.10040.4.1 (DSA)
and 1.3.14.3.2.26 (SHA1). The combined signature scheme DSS= SHA1/DSA
is also identified by a number of alternative OIDs of which one is for instance
1.2.840.10040.4.3.

Implementing the two structuresSignerInfoandAlgorithmIdentifiergiven in
fig. 2 and 3 (bearing in mind fig. 1) leads straight to the sort of problems we outline
in sect. 3.

3 JCA/JCE Details and Interpetation

Thesecurity provider(or provider for short) is at the heart of the architecture. It
registers the various cryptographicengine classesthat may be requested by means
of the JCA and JCE API. The engine types covered by the JCA/JCE are shown in
Table 2. Each particular engine is located through a hash map that maps the engine
type and algorithm name to the class that implements the according primitive.

In addition to engine classes, provider packages (should) contain two more
types of objects:transparentrepresentations of keys and algorithm parameters and
opaquerepresentations. Transparent representations provide a common view on
implementation–specific details of keys and parameters (such as the modulus and
exponent of an RSA public key) by means of a well-known interface.KeySpecs,
with the exception ofEncodedKeySpecs, are transparent representations of key ma-
terial, andAlgorithmParameterSpecsare transparent representations of algorithm
parameters.

Opaque representations hide the details but provide a container for theen-
codedrepresentation of keys and parameters, which is required to exchange such
data. For instance, the primary encoding of RSA keys is the one described in
PKCS#1 [13] and PKCS#8 [12]. Classes that implement theKey interface are

3Multiple alternative OIDs exist; for the sake of simplicity we give only one per algorithm.

6

JCA JCE
AlgorithmParameterGeneratorCipher
AlgorithmParameters KeyAgreement
CertificateFactory KeyGenerator
KeyFactory Mac
KeyPairGenerator SecretKeyFactory
KeyStore
MessageDigest
SecureRandom
Signature

Table 2: Theengineclasses defined in the JCA and JCE.

opaque representations of key material. Likewise, classes inheriting fromAlgo-
rithmParametersSpirepresent opaque representations of algorithm parameters.

Applications wishing to work with a transparent representation of parameters
of algorithmXi need to import a classXiParameterSpec at compile time. This
is clearly a limitation since once algorithmXi is broken the code is wasted and
replacingXi with another algorithm requires a modification, re-compilation and
re-distribution of the application. An alternative approach is to work on opaque
representations. For keys this is not problematic, all engine types that require keys
takeKeyobjects rather thanKeySpecs, and all engine types that generate keys return
Keyobjects as well. Generators of keys and parameters can be initialized by means
of an abstract notion of “strength”. It is up to the implementations to generate any
algorithm parameters that cannot be derived from this “strength” parameter.

Algorithm parameters are treated more stepmotherly. The enginesSignature,
Mac, andKeyAgreementdo not support initialization with opaque representations.
There is a possible way out of this dilemma; theAlgorithmParametersclass de-
clares a methodgetParameterSpec(Class paramSpec)which returns anAlgorithm-
ParameterSpecinstance. The only problem is that the understanding of how this
method should behave is generally counter to our problem at hand. Most of the
implementations that we came across show one of the following behaviors:

• IgnoreparamSpecand return an instance of a hardcoded classY .

• If the name ofparamSpecequals the name of a hardcoded classY then return
an instance ofY . Otherwise throw an exception.

• If a hardcoded classY is either the same as or a superclass or superinterface
of paramSpecthen return an instance ofY . Otherwise throw an exception.

7

Leaving the first option aside, getting anAlgorithmParameterSpecfrom an Al-
gorithmParametersinstance thus requires knowledge of the class or interface (or
subclass or subinterface) of the class supported by that instance. We feel that this
is counterintuitive to what the API documentation of the JDK has to say about
this method:“ paramSpecidentifies the specification class in which the parameters
should be returned”. Thus we suggest the following alternative behavior:

• If this instance supports anAlgorithmParameterSpecclassY that can be
casted toparamSpecthen return an instance ofY . Otherwise throw an ex-
ception.

We believe that this is both a more faithful and more useful interpretation of the
method’s documentation. In particular, this interpretation allows to passAlgorithm-
ParameterSpec.classasparamSpecand to get a valid defaultAlgorithmParamert-
ersSpecin return which can be used to initialize engines that do not support opaque
parameter representations.4 An example of a correct implementation is given in
fig. 4. We now turn our attention to the mechanism used to identify and locate
engines, and its significance for the transparent operation of poviders.

public class MyAlgorithmParametersSpiextends AlgorithmParametersSpi
{

private MyAlgorithmParameterSpec mySpec;

public AlgorithmParameterSpec engineGetParameterSpec(Class paramSpec)
throws InvalidParameterSpecException
{

if (paramSpec.isAssignableFrom(MyAlgorithmParameterSpec.class))
return mySpec;

throw new InvalidParameterSpecException(
"Unsupported parameter spec!");

}
}

Figure 4: An example implementation of a workingAlgorithmParametersSpi.
Only methodengineGetParameterSpecis shown.

Any engine implementation is identified by three parameters: theengine type,
the algorithm name, and theprovider name. If no provider name is given then

4The same argument holds for implementations ofKeyFactoryandSecretKeyFactory; both pro-
vide methods for converting opaque key representations into transparent ones.

8

Key Value
<enginename>.<stdalg> <classname>
Alg.Alias.<enginename>.<alias> <stdalg>

Table 3: The syntax of property definitions in Provider instances.

Alias Comment
<oid> maps OIDs to<stdalg>
OID.<oid> maps<stdalg> to preferred<oid>
<digestalg>/<cipher> alternative name of signature engines

Table 4: The syntax of special alias forms.

the installed providers are searched for a matching engine implementation in the
order of preference (the order in which they are registered). For this to work,
providers declare the supported engine types and algorithms by means ofproperties
– key/value pairs of typeString which are stored in a hash table. The key is the
engine type and algorithm name, and the value is the fully qualified name of the
class that implements that algorithm. The syntax of these properties is given in
Table 3.

The substitution pattern<stdalg> denotes thestandard algorithm nameas
specified in the Java Cryptography Architecture and Extension API Specification
& Reference [14, 15] and the corresponding document for the JCE. If no standard
name has been specified for the algorithm in question then a new name must be
chosen which should be modeled along the lines of the standard names. The second
line in Table 3 is analias schemewhich can be used to define alternative names for
engine implementations. The alias must be mapped to a standard name. Aliases
are resolved at most once and resolving is done only in the scope of the provider
that defines the alias.

Aliases are used for instance to map an OID to the standard algorithm name of
the engine that implements the algorithm referred to by the OID. Likewise, a spe-
cial form of aliases maps a standard algorithm name of an engine to a preferred OID
for that algorithm. Although this type of mapping is not efficient since the image
of the mapping is defined in the key and hence all entries in the provider hash map
must be searched for a matching value and key pattern. Additionally, the JCE/JCA
specification defines the alternative “slashed” name form<digestalg>/<cipher>
for signature algorithms. Both<digestalg> and<cipher> stand for the standard
name of the digest and raw signature/encryption algorithm name used in the com-

9

bined signature scheme.
Now, consider the ASN.1 structureSignerInfothat we introduced in sect. 2.

This structure defines a signature algorithm in terms of two OIDs, one for the di-
gest algorithm and another for the raw signature/encryption algorithm that together
comprise the signature algorithm to use for verifying a signature. The signature
engines designed according to the JCA already combine the digesting and encryp-
tion/verification step. Consequently, signature engines are requested by means
of the standard name or an OID of thecombinedsequence. Implementations of
SignerInfothat fall back to proprietary OID mappings might not support the com-
plete suite of algorithms supported by the installed providers.

A solution that takes into account OIDs declared by the individual installed
providers is more desireable at this point. The approach that we took exploits the
slashed form of signature engine names. The OIDs extracted from theSignerInfo
are first resolved to the standard names of the correspondingMessageDigestand
KeyPairGeneratorengines using the alias mechanism. This requires that OIDs are
set up as aliases for said engine types. Next, the standard names are combined
to the slashed form which is resolved to the standard name of theSignatureen-
gine. This name is then used to request theSignatureengine implementation. The
reverse process is similar. The standard signature algorithm name is resolved to
its slashed form which is split into the digest algorithm and cipher name. Both
are mapped to the respective OIDs using the alias form for preferred OIDs. The
resolving is done over the mappings of all installed providers and resolved combi-
nations are kept in a cache. All required mappings are “learned” from the installed
providers in this way.

This scheme works only if: (1) providers support appropriate declaration of
OIDs and slashed forms and (2) the naming discipline is kept by the providers.

A special name form is supported for cipher tranformations; the syntax for
transformations is<cipher>[/<mode>/<padding>]; square brackets denote op-
tional elements.<cipher> is the name of the cipher algorithm,<mode> the name
of the operation mode [1] to use, and<padding> the padding scheme to use for
padding the cipher text to the block size of a block cipher. This name form is
parsed by theCipher class in itsgetInstance(String transformation [,provider])
method. The question that remains to be answered is which name to use when
requesting a matchingAlgorithmParameterGeneratorinstance for a given cipher
transformation. The padding scheme is not significant for choosing between dif-
ferent algorithm parameters. Our proposition is to use<cipher>/<mode> from
the returned name first and try<cipher> in case the first attempt failed.

10

4 Discussion and Further References

We outlined a piece of software (PKCS standards support) that should be feasible
to implement in a provider- and algorithm-independent way based on the JCA/JCE.
Some of the required features cannot be implemented in a straightforward way due
to some limitations of the JCA and JCE algorithm naming scheme. Yet there is a
feasible solution based on the definition of appropriate aliases which depends on
the strict adherence of providers to the specifications of the JCA and JCE, in par-
ticular to the naming and aliasing schemes. Sun Microsystems Inc. put prominent
notice into the specification documents that the aliasing scheme may be changed or
even eliminated in the future. However, this mechanism is significant for the trans-
parent mapping of OIDs and algorithm names and is fundamental to the transparent
resolution of the signature engine identification problem described in sect. 3. Im-
provements of the aliasing scheme should aim at providing a more efficient reverse
mapping of algorithm names to the preferred OID.

Furthermore, Java Security Provider packages must put more emphasis on pa-
rameter handling and algorithm initialization issues. In the past, we experimented
with several Java Security Provider packages and particularly observed the follow-
ing deficiencies:5

• OID mappings for symmetric ciphers are not defined.

• OID mappings forAlgorithmParametersengines are not defined.

• Implementations ofAlgorithmParameterGeneratorSpiwere not provided for
symmetric ciphers.

• Providers rarely implementAlgorithmParametersSpiclasses for three sym-
metric ciphers.

• MethodCipher.getParametersis not properly supported in many Cipher im-
plementations.

• Default conversion of opaque parameters to parameter specs is not supported
properly.

Implementations ofAlgorithmParameterGeneratorSpiare particularly important
because they are asine quae nonfor transparent initialization of ciphers in a way
that is independent of a particular provider and algorithm. In this vein, listing A
shows how cipher algorithms can be initialized transparently.

5We consulted for the developers of the CDC provider; this provider avoids said deficiencies.

11

Listing B shows a tool that provides forward and reverse mapping of engine
names to OIDs, including the resolution of signature engine names to raw cipher
and digest OIDS, and vice versa.

A sample provider class with extensive and accurate declaration of OIDs,
aliases, and parameter engines is given in listing C. The full code including sample
implementations of algorithm parameter generators and parameter representations
is found at URLhttp://www.semoa.org .

The source code of a JCE cleanroom implementation with accurate alias re-
solving and class loading can also be downloaded from this site, as well as an
implementation of ASN.1, DER, PKCS#7, X.501 names and further elements of
PKCS and ITU standards. The PKCS#7 implementation uses the tool given in
listing B, and does not depend on any particular provider.

References

[1] International Organization for Standardization, Geneva, Switzerland.Infor-
mation Processing – Modes of Operation for a 64–Bit Block Cipher Algo-
rithm, 1987. ISO/IEC 8372.

[2] International Organization for Standardization, Geneva, Switzerland.Infor-
mation technology – Open Systems Interconnection – The Directory: Au-
thentication Framework, nov 1993. ISO/IEC 9594-8, equivalent to ITU-T
Rec. X.509, 1993.

[3] International Organization for Standardization, Geneva, Switzerland.Infor-
mation technology – Open Systems Interconnection – The Directory: Models,
nov 1993.

[4] International Telecommunication Union.Information technology – Abstract
Syntax Notation One (ASN.1): Specification of basic notation, dec 1997.
ITU-T Recommendation X.680, equivalent to ISO/IEC International Stan-
dard 8824-1.

[5] International Telecommunication Union.Information technology – ASN.1
encoding rules: Specification of Basic Encoding Rules (BER), Canonical En-
coding Rules (CER) and Distinguished Encoding Rules (DER), dec 1997.
ITU-T Recommendation X.690, equivalent to ISO/IEC International Stan-
dard 8825-1.

[6] Jonathan B. Knudsen.Java Cryptography. The Java Series. O’Reilly, Se-
bastopol, CA, USA, May 1998.

12

[7] Scott Oaks.Java Security. The Java Series. O’Reilly, Sebastopol, CA, USA,
May 1998.

[8] RSA Laboratories. Certificate request syntax standard. Public Key–
Cryptography Standards 10, RSA Laboratories, Redwood City, CA, USA,
1993. Available at URL:ftp://ftp.rsa.com/pub/pkcs/ .

[9] RSA Laboratories. Cryptographic message syntax standard. Public Key–
Cryptography Standards 7, RSA Laboratories, Redwood City, CA, USA,
1993. Available at URL:ftp://ftp.rsa.com/pub/pkcs/ .

[10] RSA Laboratories. Diffie–Hellman key–agreement standard. Public Key–
Cryptography Standards 3, RSA Laboratories, Redwood City, CA, USA,
1993. Available at URL:ftp://ftp.rsa.com/pub/pkcs/ .

[11] RSA Laboratories. Password–based encryption standard. Public Key–
Cryptography Standards 5, RSA Laboratories, Redwood City, CA, USA,
1993. Available at URL:ftp://ftp.rsa.com/pub/pkcs/ .

[12] RSA Laboratories. Private–key information syntax standard. Public Key–
Cryptography Standards 8, RSA Laboratories, Redwood City, CA, USA,
1993. Available at URL:ftp://ftp.rsa.com/pub/pkcs/ .

[13] RSA Laboratories. RSA Encryption Standard. Public Key–Cryptography
Standards 1, RSA Laboratories, Redwood City, CA, USA, 1993. Available at
URL: ftp://ftp.rsa.com/pub/pkcs/ .

[14] Sun Microsystems, Inc. JavaTM Cryptography Architecture API
Specification & Reference, July 1999. Internet document available
at URL: http://java.sun.com/j2se/sdk/1.3/docs/guide/
security/CryptoSpec.html .

[15] Sun Microsystems, Inc.JavaTM Cryptography Extension API Specification
& Reference, 1999. Not available outside the U.S.A.

13

A Opaque Initialization

public void opaqueInit(String alg, int size) throws GeneralSecurityException
{

AlgorithmParameterGenerator pgen;
AlgorithmParameters params;
KeyGenerator kgen;
SecretKey key;
String alt;
int n;

n = alg.indexOf(’/’);
alt = (n > 0) ? alg.substring(0,n) : alg;

try {
pgen = AlgorithmParameterGenerator.getInstance(alt);
pgen.init(size);
params= pgen.generateParameters();

}
catch(NoSuchAlgorithmException e)
{

System.out.println("Warning, no parameter generator for " +alg);
params= null ;

}
kgen = KeyGenerator.getInstance(alt);
kgen.init(size);
key = kgen.generateKey();

doSomething(key, params, alg);

return ;
}

14

B Engine Name Resolution

package codec.util;

import java.security.*;
import java.io.*;
import java.util.*;

/**
* A number of invariants must hold for the properties defined
* by the installed providers such that this class can work
* properly:
*
* Aliases must be mapped to standard JCA/JCE names
* whenever possible. All aliases for an engine must
* map to the same name.
* Two OID mappings with the same OID must map to
* the same name.
* The slashed form of signature names must be set up
* as an alias.
* Signature engines that do not have a corresponding
* cipher engine still require a reverse OID mapping of
* the form Alg.Alias.Cipher.OID.<i>oid</i> = <i>name</i>,
* where <i>name</i> is the cipher name component of a
* slashed form alias for that signature engine.
*
*
* @author Volker Roth
*/

public class JCA extends Object
{

/**
* The digest/cipher name to signature algorithm name
* mapping.
*/

private static Map dc2s = new HashMap();

/**
* The signature algorithm name to digest/cipher name
* mapping.
*/

private static Map s2dc = new HashMap();

/**
* The root alias map. Each map entry consists of the
* lower case engine name mapped to another map that
* holds the aliases for that engine.

15

*/
protected static Map aliases = initAliasLookup();

/**
* Let no-one create an instance.
*/

private JCA()
{}

/**
* Reads the properties of the installed providers and
* builds an optimized alias lookup table. All entries
* of the form
*
*
* "Alg.Alias."+<engine>+"."+<alias>
* = <value>
*
* "Alg.Alias."+<engine>+".OID."+<oid>
* = <value>
* "Alg.Alias."+<engine>+"."+<oid>
* = <value>
*
* are transformed and stored in a hashmap which is used
* by this class in order to do quick lookups of aliases
* and OID mappings. The stored entries are of the form:
*
* <engine>+"."+<alias>
* = <value>
* "oid."+<value>
* = <oid>
* "oid."+<oid>
* = <value>
*
* In case multiple providers define mappings for the same
* keys the mapping of the first registered provider wins.
*/

static private Map initAliasLookup()
{

Enumeration e;
Provider[] provider;
String k; // key
String v; // value
String s; // string
String p; // previous mapping
Map map;
int i;
int j;

16

map = new HashMap();
provider = Security.getProviders();

/* We start from the last provider and work our
* way to the first one such that aliases of
* preferred providers overwrite entries of
* less favoured providers.
*/

for (i=provider.length−1; i>=0; i−−)
{

e = provider[i].propertyNames();

while (e.hasMoreElements())
{

k = (String)e.nextElement();
v = provider[i].getProperty(k);

if (!k.startsWith("Alg.Alias."))
{

continue;
}
/* Truncate k to<engine>.<alias>
*/

k = k.substring(10).toLowerCase();
j = k.indexOf(’.’);

if (j<1)
{

continue;
}
/* Copy <engine> to s
* Truncate k to<alias>
*/

s = k.substring(0,j);
k = k.substring(j+1);

if (k.length() < 1)
{

continue;
}
/* If <alias> starts with a digit then we
* assume it is an OID. OIDs are uniquely
* defined, hence we omit<engine> in the
* oid mappings. But we also include the
* alias mapping for this oid.
*/

if (Character.isDigit(k.charAt(0)))
{

17

p = (String)map.get("oid." +k);

if (p != null && p.length() >= v.length())
{

continue;
}
map.put("oid." +k,v);
map.put(s+"." +k,v);

}
/* If <alias> starts with the string “OID.”
* then we found a reverse mapping. In that
* case we swap<alias> and the value of the
* mapping, and make an entry of the form
* “oid.”+ <value> = <oid>
*/

else if (k.startsWith("oid."))
{

k = k.substring(4);
v = v.toLowerCase();

map.put("oid." +v, k);
}
/* In all other cases we make an entry of the
* form <engine>+“.”+ <alias> = <value> as is
* defined in the providers.
*/

else
{

map.put(s+"." +k, v);
}

}
}
return map;

}

/**
* Returns the JCA standard name for a given OID. The OID
* must be a string of numbers separated by dots, and can
* be preceded by the prefix "OID.". If the OID
* is not defined in a mapping of some registered provider
* then <code>null</code> is returned.<p>
*
* OID mappings are unambigous; no engine type is required
* for the mapping and no engine type is returned as part
* of the result. The returned string consists only of the
* name of the algorithm.
*
* @param oid The string with the OID that shall be resolved.

18

* @return The standard JCA engine name for the given OID or
* <code>null</code> if no such OID is defined.
*/

public static String getName(String oid)
{

if (oid == null)
{

throw new NullPointerException("OID is null!");
}
if (oid.startsWith("OID.") | | oid.startsWith("oid."))
{

oid = oid.substring(4);
}
return (String)aliases.get("oid." +oid);

}

/**
* Resolves the given alias to the standard JCA name for the
* given engine type. If no appropriate mapping is defined
* then <code>null</code> is returned. If the given alias is
* actually an OID string and there is an appropriate alias
* mapping defined for that OID by some provider then the
* corresponding JCA name is returned.
*
* @param engine The JCA engine type name.
* @param alias The alias to resolve for the given engine type.
* @return The standard JCA name or<code>null</code> if no
* appropriate mapping could be found.
* @exception IllegalArgumentException if the alias is
* an empty string.
*/

public static String resolveAlias(String engine, String alias)
{

if (alias == null | | engine == null)
{

throw new NullPointerException("Engine or alias is null!");
}
if (alias.length() < 1)
{

throw new IllegalArgumentException("Zero-length alias!");
}
return (String)aliases.get(

engine.toLowerCase()+"." +alias.toLowerCase());
}

/**
* Returns the OID of the given algorithm name. The given name

19

* must be the JCA standard name of the algorithm and not an
* alias. Use {@link #resolveAlias resolveAlias} to map aliases
* onto their standard names.
*
* @param algorithm The JCA standard name of the algorithm
* for which the OID should be returned.
* @return The OID or <code>null</code> if no appropriate
* mapping could be found.
* @exception NullPointerException if engine or algorithm is
* <code>null</code>.
*/

public static String getOID(String algorithm)
{

if (algorithm == null)
{

throw new NullPointerException("Algorithm is null!");
}
if (algorithm.length() < 1)
{

throw new IllegalArgumentException("Algorithm name is empty!");
}
if (Character.isDigit(algorithm.charAt(0)))
{

return algorithm;
}
return (String)aliases.get("oid." +algorithm.toLowerCase());

}

/**
* Returns the OID of the given algorithm name. The given
* engine name is taken as a hint if the given algorithm
* name is a non-standard name. In that case one shot is
* given to alias resolving before a second attempt is
* made to map the algorithm to an OID. Alias resolving
* is done by means of the{@link #resolveAlias resolveAlias}
* method.
*
* @param algorithm The JCA standard name of the algorithm
* for which the OID should be returned.
* @param engine The engine name that is taken as a hint
* for alias resolving if the algorithm name cannot be
* resolved in the first attempt.
* @return The OID or <code>null</code> if no appropriate
* mapping could be found.
*/

public static String getOID(String algorithm, String engine)
{

String oid;

20

oid = getOID(algorithm);

if (oid != null)
{

return oid;
}
algorithm = resolveAlias(engine, algorithm);

if (algorithm == null)
{

return null ;
}
return getOID(algorithm);

}

/**
* This method maps a given digest algorithm OID and
* cipher algorithm OID onto the standard name of the
* combined signature algorithm. For this to work the
* aliases must be well defined such as described below:
* <dl>
* <dt> Digest Algorithm
* <dd> Alg.Alias.MessageDigest.<i>oid</i>₁
* = <i>digestAlg</i>
* <dt> Cipher Algorithm
* <dd> Alg.Alias.Cipher.<i>oid</i>₂
* = <i>cipherAlg</i>
* <dt> Signature Algorithm
* <dd> Alg.Alias.Signature.<i>digestAlg</i>/<i>cipherAlg</i>
* = <i>signatureAlg</i>
* </dl>
* The <i>oid</i> denotes the sequence of OID numbers
* separated by dots but without a leading "OID.".
* In some cases, such as the DSA, there is no cipher engine
* corresponding to<i>oid</i>₂. In this case,
* <i>oid</i>₂ must be mapped to the corresponding
* name by other engine types, such as a KeyFactory.<p>
*
* All found mappings are cached for future use, as well
* as the reverse mapping, which is much more complicated
* to synthesise.
*
* @param doid The string representation of the digest
* algorithm OID. The OID must have a "OID."
* prefix.
* @param doid The string representation of the cipher
* algorithm OID. The OID must have a "OID."

21

* prefix.
* @return The standard JCE name of the signature algorithm
* or <code>null</code> if no mapping could be found.
*/

public static String getSignatureName(String doid, String coid)
{

String dn;
String cn;
String sn;
String dc;

dn = getName(doid);
cn = getName(coid);

if (dn == null | | cn == null)
{

return null ;
}
dc = dn+"/" +cn;

synchronized(dc2s)
{

sn = (String)dc2s .get(dc);

if (sn != null)
{

return sn;
}

}
sn = resolveAlias("signature" ,dc);

if (sn != null)
{

synchronized(dc2s)
{

cn = dc.toLowerCase();

if (!dc2s .containsKey(cn))
{

dc2s .put(cn,sn);
}

}
synchronized(s2dc)
{

cn = sn.toLowerCase();

if (!s2dc .containsKey(cn))
{

s2dc .put(cn,dc);

22

}
}

}
return sn;

}

/**
* This method maps the standard signature algorithm name
* to the <i>digestAlg</i>/<i>cipherAlg</i> format. This
* format can be used to retrieve the OID of the digest
* algorithm and cipher algorithm respectively.
* For this to work the aliases must be well defined such
* as described below:
* <dl>
* <dt> Signature Algorithm
* <dd> Alg.Alias.Signature.<i>d</i>/<i>c</i>
* = <i>sigAlg</i>
* where <i>d</i> denotes the digest algorithm and<i>c</i>
* the cipher algorithm.<i>sigAlg</i> must be the name
* under which the algorithm engine is published.
* </dl>
*
* If <code>sigAlg</code> contains a "/" then
* we assume that the given algorithm name is already
* of the desired form and return<code>sigAlg</code>.
*
* @param sigAlg The standard signature algorithm name.
* @return The <i>digestAlg</i>/<i>cipherAlg</i> format
* of the given signature algorithm name or<code>
* null</code> if no suitable mapping could be found.
*/

public static String getSlashedForm(String sigAlg)
{

String v;

if (sigAlg.indexOf("/") > 0)
{

return sigAlg;
}
sigAlg = sigAlg.toLowerCase();

synchronized(s2dc)
{

v = (String)s2dc .get(sigAlg);

if (v != null)
{

return v;

23

}
}
Iterator i;
String k;
Map map;
int m;

for (i=aliases.keySet().iterator(); i.hasNext();)
{

k = (String)i.next();

if (!k.startsWith("signature."))
{

continue;
}
v = (String)aliases.get(k);

if (!v.equalsIgnoreCase(sigAlg))
{

continue;
}
k = k.substring(10);
m = k.indexOf("/");

if (m < 0)
{

continue;
}
synchronized(s2dc)
{

if (!s2dc .containsKey(sigAlg))
{

s2dc .put(sigAlg,k);
}

}
return k;

}
return null ;

}

/**
* This method maps the given standard signature algorithm
* name to the string representation of the OID associated
* with the digest algorithm of the given signature algorithm.
*
* @param sigAlg The standard signature algorithm name.
* @return The string representation of the OID associated
* with the digest alorithm used for<code>sigAlg</code>.

24

*/
public static String getDigestOID(String sigAlg)
{

int n;
String v;
String h;
String r;

v = getSlashedForm(sigAlg);

if (v == null)
{

return null ;
}
n = v.indexOf("/");

if (n < 0)
{

return null ;
}
h = v.substring(0,n);
r = getOID(h);

if (r != null)
{

return r;
}
/* We now try to “repair” the bad algorithm
* name if we find a fitting alias instead.
*/

h = resolveAlias("MessageDigest" ,h);

if (h == null)
{

return null ;
}
r = getOID(h);

if (r != null)
{

v = h+"/" +v.substring(n+1);

synchronized(s2dc)
{

s2dc .put(sigAlg,v);
}

}
return r;

}

25

/**
* This method maps the given standard signature algorithm
* name to the string representation of the OID associated
* with the cipher algorithm of the given signature algorithm.
* <p>
* This conversion is a bit tricky. In cases such as DSA,
* no corresponding Cipher engine exists, since DSA is not
* designed to be used as a cipher. In such cases, some
* provider needs to set up a bogus alias of the form:
* <dl>
* <dt> Signature Algorithm
* <dd> Alg.Alias.Cipher.OID.<i>oid</i> = DSA
* </dl>
*
* The <i>oid</i> denotes the sequence of OID numbers
* separated by dots but without a leading "OID.".
*
* @param sigAlg The standard signature algorithm name.
* @return The string representation of the OID associated
* with the cipher alorithm used for<code>sigAlg</code>.
*/

public static String getCipherOID(String sigAlg)
{

int n;
String s;
String v;
String r;

v = getSlashedForm(sigAlg);

if (v == null)
{

return null ;
}
n = v.indexOf("/");

if (n < 0)
{

return null ;
}
s = v.substring(n+1);
r = getOID(s);

if (r != null)
{

return r;
}

26

/* We now try to “repair” the bad algorithm
* name if we find a fitting alias instead.
*/

s = resolveAlias("Signature" ,s);

if (s == null)
{

return null ;
}
r = getOID(s);

if (r != null)
{

v = v.substring(0,n)+"/" +s;

synchronized(s2dc)
{

s2dc .put(sigAlg,v);
}

}
return r;

}

}

27

C Sample Provider Class

package DE.FhG.IGD.crypto;
import java.security.*;

/**
* A Java Security Provider according to the JCE specification.
* Provides basic cryptographic services, in particular those
* which seem broken in other providers such as:
*
* AlgorithmParameters
* AlgorithmParameterGenerators
*
*
* This provider furthermore defines a number of aliases that
* are ususally not found in other providers, but which are
* neccessary for such providers to work with tools such as
* the keytool and jarsigner.
*
* @author Volker Roth
* @version “$Id: a8jce.java,v 1.1 2001/10/11 15:12:34 vroth Exp$”
* @see A8KeyStore
*/

public class A8Provider extends Provider
{

/**
* The name of this provider.
*/

public static final String name= "A8" ;

/**
* Creates the A8Provider. This provider constructor registers the
* keystores, ciphers, key factories etc. supported by it.
*/

public A8Provider()
{

super(name, 1.2, "A8 Basic Java Crypto Services");
AccessController.doPrivileged(new Defines());

}

private class Defines extends Object implements PrivilegedAction
{

public Object run()
{

/* Message Digest Algorithm OID
* SHA, MD5, MD4, MD2

28

*/
put("Alg.Alias.MessageDigest.OID.1.3.14.3.2.26" ,

"SHA");
put("Alg.Alias.MessageDigest.1.3.14.3.2.26" ,

"SHA");
put("Alg.Alias.MessageDigest.OID.1.2.840.113549.2.5" ,

"MD5");
put("Alg.Alias.MessageDigest.1.2.840.113549.2.5" ,

"MD5");
put("Alg.Alias.MessageDigest.OID.1.2.840.113549.2.4" ,

"MD4");
put("Alg.Alias.MessageDigest.1.2.840.113549.2.4" ,

"MD4");
put("Alg.Alias.MessageDigest.OID.1.2.840.113549.2.2" ,

"MD2");
put("Alg.Alias.MessageDigest.1.2.840.113549.2.2" ,

"MD2");

/* Signature engines
*/

put("Alg.Alias.Signature.MD5/RSA" ,
"MD5withRSA");

put("Alg.Alias.Signature.1.2.840.113549.1.1.4" ,
"MD5withRSA");

put("Alg.Alias.Signature.1.3.14.3.2.25" ,
"MD5withRSA");

put("Alg.Alias.Signature.OID.1.2.840.113549.1.1.4" ,
"MD5withRSA");

/* Cipher engines
*/

put("Alg.Alias.Cipher.OID.1.2.840.113549.3.7" ,
"DESede/CBC/PKCS5Padding");

put("Alg.Alias.Cipher.1.2.840.113549.3.7" ,
"DESede/CBC/PKCS5Padding");

put("Alg.Alias.Cipher.1.2.840.113549.3.2" ,
"RC2/CBC/PKCS5Padding");

put("Alg.Alias.Cipher.OID.1.2.840.113549.3.2" ,
"RC2/CBC/PKCS5Padding");

put("Alg.Alias.Cipher.OID.1.2.840.113549.1.5.1" ,
"PBEWithMD2AndDES");

put("Alg.Alias.Cipher.1.2.840.113549.1.5.1" ,
"PBEWithMD2AndDES");

put("Alg.Alias.Cipher.OID.1.2.840.113549.1.5.3" ,
"PBEWithMD5AndDES");

put("Alg.Alias.Cipher.1.2.840.113549.1.5.3" ,

29

"PBEWithMD5AndDES");

put("Alg.Alias.Cipher.OID.1.2.840.113549.1.5.12" ,
"PBEWithSHA1And128BitRC4");

put("Alg.Alias.Cipher.1.2.840.113549.1.5.12" ,
"PBEWithSHA1And128BitRC4");

put("Alg.Alias.Cipher.OID.1.2.840.113549.1.1.1" ,
"RSA");

put("Alg.Alias.Cipher.1.2.840.113549.1.1.1" ,
"RSA");

/* (Secret)KeyFactories
*/

put("Alg.Alias.SecretKeyFactory.1.2.840.113549.3.7" ,
"DESede/CBC/PKCS5Padding");

put("Alg.Alias.KeyFactory.1.2.840.113549.1.1.1" ,
"RSA");

/* AlgorithmParameters
*/

put("Alg.Alias.AlgorithmParameters.1.2.840.113549.3.7" ,
"DESede");

put("Alg.Alias.AlgorithmParameters.DESede/CBC/PKCS5Padding" ,
"DESede");

put("Alg.Alias.AlgorithmParameters.1.2.840.113549.3.2" ,
"RC2");

put("AlgorithmParameters.RC2" ,
"DE.FhG.IGD.crypto.RC2Parameters");

put("AlgorithmParameterGenerator.RC2" ,
"DE.FhG.IGD.crypto.RC2ParameterGenerator");

put("Alg.Alias.AlgorithmParameters.1.2.840.113549.1.5.1" ,
"PBE");// PBEWithMD2AndDES

put("Alg.Alias.AlgorithmParameters.1.2.840.113549.1.5.3" ,
"PBE");// PBEWithMD5AndDES

put("Alg.Alias.AlgorithmParameters.1.2.840.113549.1.5.12" ,
"PBE");// PBEWithSHA1And128BitRC4

put("Alg.Alias.AlgorithmParameters.PBEWithMD2AndDES" ,
"PBE");// PBEWithMD2AndDES

put("Alg.Alias.AlgorithmParameters.PBEWithMD5AndDES" ,
"PBE");// PBEWithMD5AndDES

put("Alg.Alias.AlgorithmParameters.PBEWithSHA1And128BitRC4" ,
"PBE");// PBEWithSHA1And128BitRC4

put("AlgorithmParameters.DESede" ,
"DE.FhG.IGD.crypto.DESParameters");

30

put("AlgorithmParameterGenerator.DESede" ,
"DE.FhG.IGD.crypto.DESParameterGenerator");

put("AlgorithmParameters.PBE" ,
"DE.FhG.IGD.crypto.PBEParameters");

put("AlgorithmParameterGenerator.PBE" ,
"DE.FhG.IGD.crypto.PBEParameterGenerator");

put("AlgorithmParameterGenerator.PBEWithMD2AndDES" ,
"DE.FhG.IGD.crypto.PBEParameterGenerator");

put("AlgorithmParameterGenerator.PBEWithMD5AndDES" ,
"DE.FhG.IGD.crypto.PBEParameterGenerator");

put("AlgorithmParameterGenerator.PBEWithSHA1And128BitRC4" ,
"DE.FhG.IGD.crypto.PBEParameterGenerator");

put("Alg.Alias.AlgorithmParameters.1.3.14.3.2.12" ,
"DSA");

put("Alg.Alias.AlgorithmParameters.1.2.840.10040.4.1" ,
"DSA");

return null ;
}

}

}

31

