
An Application of Mobile Agents as Personal
Assistents in Electronic Commerce

Volker Roth1, Mehrdad Jalali1, Roger Hartman1, and Christophe
Roland2

1 Fraunhofer Institut für Graphische Datenverarbeitung
Rundeturmstraße 6, 64283 Darmstadt, Germany

{vroth|jalali}@igd.fhg.de
2 Thomson-CSF Communications

66, Rue du Fossé Blanc
BP82, 92231 Gennevilliers Cedex, France

Christophe.Roland@enst.fr

Abstract. In this paper we describe the architecture of a Web-
integrated personal commerce assistant application based on mobile
agents. The assistant’s task is to do some high-level shopping on behalf
of a user. In our case the assistant organises the catering of a birthday
party.

Keywords: mobile agents, electronic commerce, delegation, World
Wide Web, Java

1 Introduction

Mobile agents [7] push the flexibility of distributed systems to their lim-
its since not only computations are dynamically distributed but also the
process and code that performs them. Information gathering and elec-
tronic commerce are application areas in which mobile agent technology
may offer substantial benefits [5]. In the course of the European ESPRIT
Project AIMedia (Targeted Advertising on Interactive Media) – a two-
year project now running for one and a half years – we developed a proof
of concept application based on mobile agent technology by which we in-
tend to demonstrate some of the benefits that can be expected from using
mobile agent technology. The basic idea is to delegate a high-level shop-
ping task to a mobile agent (the personal commerce assistent, PCA). In
our case, the agent’s goal is to organise the catering for a birthday party.
We give details of the application in Section 4. The graphical front-end
to the application is managed by a dedicated agent that may be accessed



through the World Wide Web using commonplace browsers. The integra-
tion of our mobile agent framework into the World Wide Web and its
application to the PCA application is the subject of Section 3.

A number of mobile agent systems are in existence at present; basic
information on about 60 such systems (including ours) was collected in
the run-up to the ASA/MA’99 Conference1. Each platform implements a
particular flavour of mobile agents and puts emphasis on different aspects
of agent mobility. The focus of our developments is on providing applica-
ble and flexible security mechanisms. This is where our platform differs
from most comparable ones. In Section 2 we outline the general architec-
ture of our platform. A thorough discussion of the security architecture
is beyond the scope of this article; this is covered by two further articles
issued for publication.

2 SeMoA Overview

In this section we describe the basic concepts and architecture of a Mo-
bile Agent Server called SeMoA that is under active development at the
Fraunhofer Institute for Computer Graphics. Like many others we chose
Java as the implementation language and agent programming language.
First, Java was gaining widespread attention so we could expect that a sea
of third party support would become available, and second, Java already
provided a framework for security and class loading that suited our needs
very well. Obviously, Java had considerable influence on our design. Apart
from the leverage of the Java 2 Sandbox and AccessController model, we
decided that SeMoA:

– should have a minimal kernel and simple lightweight interfaces
– be modular, flexible and easily extendable
– build on JCE/JCA to render it independent of particular crypto-

graphic mechanisms
– enforce strict separation of agents
– provide practical and enforcable security mechanisms

SeMoA should not require particular agent transport mechanism or dic-
tate a particular agent communication mechanism. Instead, we wanted it
to leverage existing protocols and infrastructures (such as SMTP, POP,
IMAP, HTTP, FTP). Both, transport and language support should be
done through extensions, that might be provided through agents or spe-
cial types of plugins (services).
1 http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole/mal/mal.

html



Agent Server

ServicesAgents

manages
manages,
configures

register,
unregister,

use

can refer to
Threads

Resources controls

Fig. 1. This figure illustrates the relationships between concepts of the platform.

The general architecture of the SeMoA Server is based on the con-
cepts of agents and services (see also Figure 1). Agents may register ser-
vices through a central Registry which makes the services visible to other
agents. Special types of services (called plugin services) can be automat-
ically registered and configured by the server on start up. The primary
difference between services and agents is that agents are active and ser-
vices are passive. Agents group a number of resources and permissions
such as threads and filesystem storage; services run in the caller’s thread
and thus do not require the type of management required for agents.
However, services may pose as a front for agents (comparable to proxy
objects) that restrict access to agents with regard to a particular purpose
or aspect of the agent (see also Figure 2). Services may be registered on
a number of service levels (depending on the permissions of the register-
ing agent) that share a common access policy. For each service level the
following rights can be granted:

– Register a service.
– Unregister a service.
– Request (use) a service.
– Receive events distributed on the given level.
– Send event on the given level.

Services are identified by the name of their intended level and a well-
known service name, and are associated with a well-known interface or
class (or subclasses thereof). The Registry supports dictionary operations
on the available services that are subject to permission checks. Lookups



are based on a given level and service name. The Registry may also list the
service levels (public) and the names of services registered on a given level
(requires appropriate permission). Since agents may simply instantiate lo-
cal service classes and use this to circumvent the security checks, the root
class of all services captures the Access Control Context [4] on creation
and provides convenience methods for the execution of Privileged Actions
restricted to the captured context. This ensures that services cannot leak
access rights when instantiated directly.

register,
unregister,

use

Server

Registry

A

D

E

CB

Agents

FE

identical objects

web

security

transport

Service

Agent

e.g.
ServletRegistry

Fig. 2. Agents may register services that provide controlled access to particular aspects
of an agent.

Transport mechanisms for transporting agents to remote servers are
provided by transport services registered at the transport level. A cen-
tral gateway object (the outgate) scans the transport level for registered
transport services and matches the advertised transport protocols against
the destination specified by agents through a ticket. The ticket basically
contains a set of alternative URL that define the destination and desired
transport protocol of the agent. Incoming transport is handled by agents
that for instance listen on network ports and dispatch incoming agents
to a central gateway object reserved for incoming agents (the ingate).



Both ingate and outgate feed agents through a pipeline of filter services
registered at the security level. These filters take care of various crypto-
graphic operations required to handle certain aspects of agent and server
security. In the spirit of Chess et al. [3] the server is the Agent Meeting
Point (AMP), the Registry corresponds to the Shallow Router (albeit on
a very low level compared e. g. to a subset of KQML), and the ingate
corresponds to the Concierge.

3 Web Integration

It is hardly conceivable that mobile agent technology could achieve note-
worthy market penetration without offering some sort of integration with
the Web. For this reason we developed a Web agent. This agent speaks
HTTP and implements a Servlet engine according to Version 2.1 of Sun’s
Servlet specification. Servlets are meant to be server-side extension for
Web servers such as the popular Apache Server.

Our Web agent registers a service (the Servlet registry) with the ser-
vice registry of its hosting agent server which allows other agents to reg-
ister Servlets they bring with them (see also Figure 3). Any pre-existing
Servlet may be used as long as it conforms to the standardised API. This
allows agents to interact with humans through HTML pages. Going even
further, mobile agents may carry ordinary Applets that handle – in a
standard browser – client side presentation of results or status informa-
tion generated by its serving mobile agent. Probably the most straight-
forward application of this approach is the configuration of agents before
they are sent away to roam the Internet. We chose this approach for the
configuration of the PCA described in Section 4.

Although our Web agent is static at present there is no reason why
it shouldn’t be able to migrate itself if needed. Hence our Web agent in
principle supports the easy and transparent migration of a complete Web
server by means of a command. This might become interesting in com-
bination with comparisons of ISP prices for Web hosting. Private home
page owners might also appreciate such a feature if Web space providers
offer reduced prices. In that case said owners may simply instruct their
“home page agent” to move somewhere else.

The Servlet registry and the Web agent do not restrict access to a
particular agent’s Servlets yet. Anyone who knows the exact URL chosen
by the agent upon registering its Servlets may send requests to it. We plan
to add a non-public service whereby agents also pass for instance a set
of public-key certificates of those who are allowed to contact the Servlet.



Contacting non-public Servlets then will require the use of transport layer
security mechanisms for authentication and encryption.

4 Personal Commerce Assistent

Based on our mobile agent platform and the Web agent described in
Section 3 we developed the personal commerce assistant (PCA) – an
ensemble of services and agents that handle a specific high-level shopping
task on behalf of a user. By “high-level” we mean a shopping task that is
formulated at an abstraction layer above the bare product level (although
the outcome probably is a detailed shopping list consisting of products
and quantities).

In our case this task is to organise the catering for a birthday party.
The agent’s task is to select a number of recipes for food and beverages,
and to suggest a present. Hypothetical users of the PCA are Admittedly
those who give the party – who usually do not buy their own presents.
Yet this serves as an example that the shopping task may include more
than just food. In principle, decoration can be ordered as well to give the
party a certain style. This may well include finding suitable music (for
instance in the popular MP3 format) ready to be played at the party.

The PCA scenario consists of the user interface agent, the search
agent, a recipes server, a Yellow Pages server, and the servers of retailers.
The user either runs a lightweight agent server himself or attaches his
browser to the PCA run by some service provider (the browser is used in
both cases as the user interface).

The user interface agent registers a Servlet with the Servlet registry
of the Web agent on its local platform. The user interface agent provides
pages via the Servlet enabling the user to configure the PCA with in-
formation on the person giving the party and the expected number of
guests. So far, this information includes the sex, age group, category of
hobbies, preferred beer brand, and “theme” of the food (either Chinese,
American, European, or none in particular). The beer brand is ignored if
alcohol is not allowed for the given age group. On submitting the infor-
mation the user interface agent generates and returns an URL that can
be used to retrieve the results once they become available. At the same
time it selects two meals (by name) and beverages based on the entered
information. If the age group is above 18, five cocktails are also selected
(by name). The user interface agent then creates and configures a search
agent (this is illustrated in Figure 3).



registers
Servlet

ServletRegistry

AIMediaServlet

Files

HTTP

HTTP Agent /
Servlet
Engine

AIMedia
Agent

Search
Agent

HTML
templates

requests
Servlet

Fig. 3. The integration of Web servlets carried by mobile agents in the server archi-
tecture through a service offered by the Web agent.

The search agent then migrates to a recipes server on which it resolves
the names of the selected recipes against a small database of recipes. The
recipes are normalised to one serving. The quantities are multiplied by
the expected number of guests by the search agent. The recipes database
consists of a PostgreSQL database that is connected to the agent server by
means of a service that issues queries over JDBC. The search agent also
looks for a picture database service and retrieves pictures of the selected
meals and cocktails if available. Recipes consist of a list of general product
entries without specific details such as brand names. The search agent
then proceeds to the Yellow Pages server, locates the retailer information
service and queries for the sites of retailers that may offer the required
products. This information service is based on a flat file database with
entries of the known retailers and the product categories offered by them.
The search agent assembles its subsequent itinerary and hops from one
retailer to the next until all products are found or the itinerary is finished.

On each retailer server the search agent looks for a product infor-
mation service, which is used to retrieve detail information on the re-
quired products. This information service connects via JDBC to further
PostgreSQL databases with product records kindly provided for testing
purposes by our project partners J. Sainsbury’s, United Kingdom, and
OTTO Versand Hamburg.



The search agent then returns to the originating server, passes the re-
sults to the user interface agent, which formats them into a nicely looking
HTML page with pictures of the food and beverages. This page is then
made available through the URL initially passed as the response to the
submission of the user information. It contains a complete shopping list
with product details, numbers of required units and capacities per unit.

For demonstration, we usually use three agent servers. The first agent
server runs the Web agent and user interface agent. The second server
runs the recipes and yellow pages service. The third and final server runs
the product information services (see Figure 4).

AIMedia Agent

Alpha

Bravo

Charlie

OTTOJS

Registry

Recipes DB

P3PService

Prompt
Service

Search Agent

Fig. 4. The architecture of the AIMedia demonstrator.

5 Extensions

Within the AIMedia project additional software components were devel-
oped which are targeted at enriching existing Web sites with personalised
services by using proxy servers. These extensions are integrated with the
mobile agent architecture by means of services registered in the server.
These services link to the components also used in a pure Web-based
approach and make their functionality available to mobile agents.



One such component supports the exchange of personal profiles as
set forth by the World Wide Web Consortium’s Platform for Privacy
Preferences Project2 (P3P). The development of P3P occurred within a
consensus process involving representatives from more than a dozen W3C
member organizations, as well as invited experts from around the world.

P3P is designed to help users reach agreements with services (Web
sites and applications that declare privacy practices and make data re-
quests). As the first step towards reaching an agreement a service sends a
machine-readable proposal in which the organization responsible for the
service declares its identity and privacy practices. A proposal applies to a
specific realm, identified by a URI or set of URIs. The set of statements
that may be made in a proposal is defined by the harmonized vocabulary,
which is a core set of information practice disclosures. These disclosures
are designed to describe what a service does rather than whether it is
compliant with a specific law.

P3P does not attempt to guarantee or enforce privacy in itself, but
relies on a complementary set of measures to earn the trust of users. Hooks
for technical protection mechanisms, trusted third party assistence, and
auditing are provided. Prosecution of fraudulent privacy assertions is part
of the concept.

We chose P3P in order to allow users to specify personal information
in a clearly specified and somewhat controlled way; information provided
by users may be used by retailers to provide personalised offers through
the AIMedia Shopping Assistant component. The integration of the P3P
components is illustrated in Figure 5.

We assume that the user registers profile information with a trusted
service provider, for instance an Internet Service Provider (ISP). PCAs
of the user migrate to the ISP’s agent server and announce to a P3P
service available in the agent server where they intend to go by passing
the destination URL. In exchange they receive an agreement ID that
was established by the P3P proxy of the ISP in the course of the profile
negotiation with the retailer’s P3P proxy. Retailers must register an URL
with the yellow pages that will be used to contact them (see Figure 5)
prior to the first negotiation.

The user’s PCA then migrates to the desired retailer agent servers and
looks for product information. The agent’s browsing may be regarded as a
session of the agent’s owner who browses a Web site of the retailer using an
standard browser. The PCA may collect personalised prompts by passing
selected products and the agreement ID it received while querying the
2 http://www.w3.org/P3P/



P3P
Proxy

P3P
Service

Yellow
Pages

URL AgrID

P3P
Proxy

Profile
AgrID

Online

Offline

Agent
Server

ISP Retaileri

Registration

Fig. 5. The P3P negotiation services are integrated into the agent server by means of
special services that forge the link.

P3P service on the ISP. The agreement ID allows the retailers to take
into account the personal information that was provided by the agent’s
owner through the trusted intermediary. The prompt format is the same
in the PCA scenario and the online scenario in AIMedia which is based
on ordinary Web browsers. The PCA presents these prompts upon return
to the user.

6 Conclusions

The amount of information that is available on the Internet is growing
steadily, leading to decreased transparency of the offers. More and more
time needs to be invested in order to sift through the amounts of data
searching for valuable and relevant information. Agent technology offers
compelling advantages with regard to the problems in Internet-based elec-
tronic commerce.

Agents may focus on a specific domain and apply domain-specific
knowledge in order to optimize their strategies and the quality of re-
sults. In electronic marketplaces agents often act as middlemen of either
the buyer or seller. For instance Jango [2], and BargainFinder3 [1] are
comparison-shopping agent systems that represent the buyer. However,
they often work like intelligent search engines that request and digest
3 BargainFinder is not available on the Web anymore



information from the original site and store the resulting data centrally.
Queries by the user are resolved against this database although the final
purchase must be done through the original Web site.

Since original sites are designed to communicate offers to humans
the search engine needs to parse the Web pages and extract the rele-
vant information from it. This limits the information (in particular meta-
information that is digestible by automated processes) that can be ex-
tracted about products. From a technical vantage, agent to agent based
systems may relieve the retailer’s burden of providing elaborate user inter-
faces. This may be handled by agents instead. Retailers may concentrate
on an efficient and functional representation of offers [8]. The data ex-
changed between agents can be represented in a way more suitable to
automated processes.

Mobile agents may seek for relevant products directly at the source of
information which obsoletes the need to transfer massive numbers of Web
pages in order to build the database from which summaries are extracted.
Since the search criteria and filter algorithms may be distributed with
mobile agents, software updates and the introduction of new mechanisms
and rules is simple.

The greatest hindrance that we experienced is the lack of abstraction
from the actual data in the retailer’s databases. In our view appropriate
models, product ontologies and agent communication models are prereq-
uisites for a flexible and widespread application of agents in electronic
commerce with regard to applications such as the one described in this
article. Mobility adds to the benefits of agent systems since a large num-
ber of specialised and highly focused services can be distributed easily.
Users may run searches and continuously monitor sources of information
in the background even while being detached from the network.

Our model and architecture facilitates the deployment of such services
and integrates nicely with existing infrastructure of the World Wide Web.
The mechanisms used to create Web-enabled agents correspond to mecha-
nisms already in use to extend Web servers and thus feature a flat learning
curve.

In the remaining period of the project, the PCA application prototype
will be subject to a number of user test in order to measure their responses
to this approach and how they feel towards delegating task such as the
implemented one to an agent.



7 Acknowledgments

Parts of this work were sponsored through the ESPRIT project AIMedia:
Targeted Advertising on Interactive Media, project number 26983. We
would like to thank our project partners, in particular Sabine Geissel
from OTTO Versand Hamburg, and Ian Hawkins and Mark Venables
from Sainsbury’s for their kind support and for providing the testbed
databases.

References

1. Cstar. Internet resource at URL http://bf.cstar.ac.com/, 1999.
2. Exite shopping. Internet resource at URL http://www.jango.com/, Version current

6th Dec. 1999.
3. David Chess, Benjamin Grosof, Colin Harrison, David Levine, Colin Parris, and

Gene Tsudik. Itinerant agents for mobile computing. IEEE Personal Communica-
tions, pages 34–49, October 1995.

4. Li Gong. JavaTM Security Architecture (JDK 1.2). Sun Microsystems, Inc. in [6],
relative URL: file:/docs/guide/security/spec/security-spec.doc.html.

5. Danny B. Lange and Mitsuru Oshima. Seven good reasons for mobile agents. Com-
munications of the ACM, 42(3):88–89, March 1999.

6. Sun Microsystems, Inc. JDK 1.2 Documentation, 1998. Available at URL: http:
//java.sun.com.

7. James E. White. Mobile Agents, chapter 18. AAAI/MIT Press, 1997.
8. Rüdiger Zarnekow and Walter Brenner. Diensteebenen und kommunikationsstruk-

turen agentenbasierter elektronischer märkte. Informatik Spektrum, 22(5):344–350,
October 1999.


