
Mutual Protection of Co-operating Agents

Volker Roth

Fraunhofer Institut für Graphische Datenverarbeitung
Rundeturmstraße 6, 64283 Darmstadt, Germany

vroth@igd.fhg.de

Abstract. Security is a fundamental precondition for the acceptance
of mobile agent systems. In this paper we discuss protocols to improve
agent security by distributing critical data and operations on mutually
supporting agents which migrate in disjunct host domains. In order to
attack agents, hosts must collude/conspire across domains. Proper selec-
tion of itineraries can minimize the risk of such coalitions being formed.

Keywords: mobile agent security, malicious host, distributed
applications, itinerary recording, agent cooperation, ecash

1 Introduction

Mobile agents are bundles of program and state, that move within a
network to perform tasks on behalf of their owners. The benefits offered
by mobile agents unfold in areas where it is advantageous to move the
computation process over a network to the source of data instead vice
versa; for instance if huge amounts of data must be processed, or the
network is slow, expensive, or is not permanently available. Among the
manifold uses for mobile agents, electronic commerce applications are
noted most frequently. With good reason – electronic commerce provides
perfect grounds to illustrate the benefits of mobile agents as well as the
threats that keep us from using them in open networks, so far.

One example benefit of a mobile agent is its ability to carry out certain
tedious or time–consuming tasks autonomously while its owner is offline.
The goal of, for instance, a shopping agent might be finding the best
offer for a given product description, thus optimising the benefit to its
owner (which is legitimate). However, shops might be tempted to opti-
mise for their own benefit, even if it means optimising at the expense of
the agent in unfair ways (which is not legitimate). This includes manipu-
lation of offers previously collected by the agent, as well as abusing agents



as mediators of attacks on competitors. Hence, neither party trusts the
other, and both share their distrust in the interconnecting network. As a
consequence, the security requirements for mobile agent systems are man-
ifold as well as demanding. Quoting from [3]:“It is difficult to exaggerate
the value and importance of security in an itinerant agent environment.
While the availability of strong security features would not make itiner-
ant agents immediately appealing, the absence of security would certainly
make itinerant agents very unattractive.”

In general, the problem of malicious hosts is considered particularly chal-
lenging. The threats imposed by malicious hosts are immanent in the
way mobile agent systems are built. Since agents are executed on their
host, each instruction in the agent’s code is observed by the controlling
(virtual) machine which also maintaines the agent’s state. This causes a
number of security concerns of which the most prominent ones are:

1. The integrity of the agent, in particular the integrity of its mutable
part, need to be protected. Agents might be abused as innocent car-
riers of illegal or offensive materials such as warez (pirated software).
Hosts may also try to delete, replace, or invalidate commitments to the
agent, such as terms negotiated in electronic commerce applications.
This would enable the host repudiate said terms later.

2. Maintaining the secrecy of the agent’s computations and data is a
fundamental requirement for fair negotiations as well as for computa-
tions on confidential information such as the preferences (or profile)
of the agent’s owner, or secret keys.

3. Protecting the integrity of the agent’s control flow is a precondition for
any agent to trust its own decisions. Otherwise, malicious hosts might
make agents believe that an offer is acceptable when it is actually not.

Notable advances were made with regard to items 1 and 2. Karjoth
et al. [4] introduced the notion of strong forward integrity and proposed
protocols for protecting the computation results of free–roaming agents.
Their work is an extension of partial result authentication codes intro-
duced by Yee [15]. Roth and Jalali proposed an agent structure that
supports access control and authentication of mobile agents [6]. Agent au-
thentication and state appraisal is covered by Berkovits et al. [1]. Sander
and Tschudin [7] introduced the notion of mobile cryptography and de-
vised approaches for non–interactive computing with encrypted functions
using homomorphic encrytion schemes. Tschudin also proposes an ap-
proach for securing termination signals for mobile services [11] which



incorporates ideas from Riordan and Schneier [5]. Regarding item 3, Vi-
gna [12] proposed cryptographic traces to create verifiable execution traces
of agents. Vigna also discusses a number of drawbacks with his approach
such as limitation to single–threaded agents, extensive computational and
memory overhead, as well as limitation to a posteriori detection. The no-
tion of trust, its role in mobile code systems, as well as trust management
is discussed for instance by Swarup et al. [10] and Blaze et al. [2].

The majority of risks stem from the fact that agents are deployed in
open untrusted networks. However, even the hosts connected through
this network do not know and do not necessarily trust each other. In the
remainder of this paper we intend to exploit exactly this fact for improving
the security of mobile agents against attacks by malicious hosts. The
general idea is based on the co–operation of multiple agents with the
goal of mutual protection (of the application built on them). Thus, co–
operation of agents is used to establish a distributed “virtual shelter”
inside the open network, in which agents can hide and to which they may
retreat while assuring the security of their counterparts.

In Section 2 we motivate and formalise this idea, and give definitions and
notations used in our paper. In Section 3 and Section 4 we devise two pro-
tocols, based on co–operating agents, suitable to protect different aspects
of the general purchase agent against malicious hosts. One protocol is
directed at recording the actual itinarary taken by a free–roaming agent;
the second protocol addresses the delegation of electronic payments to
mobile agents. Conclusions will be drawn in Section 5.

2 Co–operating Agents

With regard to mobile agent security, the most conservative approach
is to assume that each host on a mobile agent’s itinerary is hostile and
willing to collaborate with other malicious hosts visited by the agent on
its route. This assumption is as realistic as the assumption that hosts can
be generally trusted, though. A more reasonable assumption is probably
the following:

Given a particular mobile agent, at any point in time, a certain
percentage of hosts might be malicious.
Not all malicious hosts are willing to collaborate with other hosts
in attacking a mobile agent.



The percentage of malicious hosts likely depends on the gain which can
be expected from successfully attacking mobile agents weighted against
the costs of mounting the attack as well as the risk of detection and the
consequences of being detected. Collaborations of multiple hosts on an
agent’s itinerary yields more power but it also requires close coordina-
tion and increases the danger of leaks which might lead to disclosure of
the collaboration. Whether an agent will be attacked by a single mali-
cious host or a collaboration of hosts on its itinerary depends on a sea
of unpredictable parameters that are unique for each instantiation of an
agent.

Still, we would like to model partitions of hosts based on their willingness
to collaborate with regard to attacking a fixed agent. For this reason, let
H be the set of hosts interconnected by a network. For a given instan-
tiation of an agent let R be a relation defined as R ⊆ H × H with the
interpretation (hi, hj) ∈ R ⇔ hi and hj collaborate in attacking the agent.
Let Ha, Hb be non–empty subsets of H with (Ha × Hb) ∩ R = ∅. These
two sets are denoted non–colluding. A special host is the first host (the
origin) of an agent, since this needs to be a trusted host.

Two co–operating agents are defined to be agents a and b such that the
itinerary of a includes only hosts in Ha and b’s itinerary only includes
hosts in Hb. Let ha and hb be the computing environments currently
executing agents a and b respectively. Occasionally, we will say that ha
is “the host of” agent a, or “ha is agent a’s host”.

Although agent a might be attacked by host ha, by definition this host
may not attack the co–operating agent b without breaking into host hb.
This can be exploited to design protocols for securing agents against at-
tacks by single malicious hosts as well as hosts that collaborate with other
hosts as long as the collaboration does not span the itineraries of both
agents.

A number of strategies can be used as starting points for developing said
protocols:

Secret sharing: Authorisation data is secretly shared by both agents.
A single share conveys no information about the shared secret. There-
fore, a malicious host must get the remaining share by asking a host
on the co–operating agent’s itinerary to steal it, or it must break into
that host.

Remote authorisation: The decision whether the share of the autho-
risation data is passed to the host executing the agent is taken by the



co–operating agent. The agent itself prefilters the data upon which the
decision is based, and transfers it to its co–operating agent. Therefore,
a malicious host must ask the remote host to manipulate the decision,
or it must break into that host.

Remote storage of commitments: An agent transfers commitments
of the host on which it runs, such as commercial offers, to its co–
operating agent (probably in the course of remote authorisation),
which verifies and stores it for future reference and non–repudiation.
In order to undo or invalidate its commitment, a malicious hosts needs
to break into a host on the co–operating agent’s remaining itinerary.

In the remaining sections we illustrate the idea of mutual protection of
co–operating agents by giving example protocols. For those protocols to
work we need to make two additional assumptions:

– Hosts transport agents through authenticated channels.
– Hosts provide an authenticated communication channel to the two

cooperating agents.
– The authenticated identity of the remote host, the authenticated iden-

tity of the host the agent came from as well as the local host’s identity
are provided to the hosted agent.

Yee already pointed out that “if an agent is running on an honest server,
both these answers (for the peer identity and the local host’s identity)
will be correct. . .” [15]. We assume that a host is honest unless it may
successfully attack an agent on its own, or with the help of other hosts
on this agent’s itinerary. In other words, we assume that hosts do not
randomly introduce lies.

3 Tracing Loose Routes

A simple yet effective attack on a mobile agent is to not let the agent
migrate to the servers of competitors. This particularly affects mobile
agents with loose itineraries in comparison to agents whose itineraries
are defined a–priori, because deviations from a fixed itinerary are easier
to spot and prove.

We would like to record the actual loose route taken by a free–roaming
agent without any possibility of manipulation by the hosts on its route.



Let a and b be two co–operating agents, and let Ha,Hb⊆H be two non–
colluding sets of hosts. Both agents shall return to their origin upon com-
pletition of their tasks. Each agent b records and verifies the route of its
co–operating agent a as described below.

Definition: Let hi∈Ha be the ith host being currently visited by agent a
and let id(hi) be the identity of host hi. Let previ be agent a’s idea
of the identity id(hi−1) of its previous hop. nexti shall denote the
identity of the next hop agent a wants to take while being on host hi.
The agents start at host h0, hence hn=h0 for a route with n hops.

Initialization: Let h0 be the origin of agents a and b. h0 has to be a
trusted host with respect to a and b. For agents a and b, next0 is
set to the first hop of their respective itineraries. Both agents are
subsequently sent to their first hop.

Step i, i ∈ {1, . . . , n}: Agent a sends a message containing the next
hop nexti and the previous hop previ to agent b. The authenti-
cated channel enables Agent b to learn id(hi). Agent b verifies that
id(hi)=nexti−1∧previ=id(hi−1) and appends nexti to the stored route.

Security of the protocol: It is straightforward to see that if host hi

forwards agent a to a host hi+1 with id(hi+1)6=nexti then host hi+1 must
either successfully masquerade as the host with id nexti or it has to deny
communication between the co–operating agents. On the other hand, if
host hi+1 permits the communication and properly authenticates itself (in
other words, hi+1 is honest regarding the protocol) then agent b discovers
that host hi sent agent a to the wrong destination.

If id(hi+1)6=nexti then host hi+1 cannot put agent a back on its route by
sending a to the host with identity nexti because agent b recorded id(hi)
as previ+1. As a matter of fact, hi+1 must either be honest (identifying hi

as a cheater in the process) or hi+1 has to collaborate with hi in putting
the agent back on its expected route (more precisely, hi has to put back
the agent on its route itself, or it must disclose its authentication keys
to hi+1). The last case reduces to either simply sharing a copy of the
agent with hi+1, or merging hosts hi and hi+1 into a single host under
the identity of hi – hardly something which can be prevented or detected
at all.

A malicious host hi+1 might incriminate a honest host hi by claiming to
have received agent a from some other host h’, hence implicating that hi

sent a to h’ instead of the host with identity nexti=id(hi+1). The protocol



is not able to decide which one of the two hosts is the culprit. However, if
hi+1 really received agent a from h’ then hi+1 should be able to produce
a copy of a which is signed by h’ given some additional agent protection
mechanisms are implemented (see [6]).

If agent a is killed, one of two hosts might be responsible and the protocol
cannot decide which one. In addition to that, some host hi+1 might take
two agents a1 and a2 both being received by the same host hi and switch
the recording of the route of a1 to agent b2 and vice versa. Therefore,
co–operating agents should also exchange and verify (unique) identity
information that is bound to the agent’s static part by their owner’s
signature (see [6]). In that case, attempts to send fake ids are detected
on the first honest host. The protocol must be enhanced accordingly.

4 Electronic Cash Payments

Current descriptions of mobile purchase agents primarily address collect-
ing and filtering of offers. In this section, we would like to consider dele-
gating payment authorisation to mobile agents as well. The risks in doing
so are obvious. Digital representations of money may be copied, payment
decision altered, and commitments erased after payment, by malicious
hosts. However, modelling a complete purchase cycle with mobile agents,
including payment authorisation, is an attractive thought. Cash–like sys-
tems are particularly well–suited because in contrast to for instance credit
card based systems the possible loss is limited to the value of the digital
coin.

Co–operating agents provide an approach to tackle security problems in-
volved in payment authorisation. Protocols such as Chaum’s digital elec-
tronic cash protocol (as described for instance in [8]) can be adapted
to work with co–operating agents as described in the protocol given be-
low. Chaum’s protocol provides detection of double spending with cheater
identification.

Let a and b be two co–operating agents, and let Ha,Hb⊆H be two non–
colluding sets of hosts.

Initialisation The owner of the agents prepares a money order m as de-
scribed in [8]. The identity strings are prepared by randomly choosing
keys kl

i, kr
i , i = 1, . . . , n and computing

{Ii = (E
kl

i
(I l

i , H(I l
i)), Ekr

i
(Ir

i , H(Ir
i ))) | i = 1 . . . n}



where E is a suitable encryption function and H is a strong crypto-
graphic one–way hash function. The money order as well as the keys
are secretly shared between agents a and b. Both agents are sent on
their respective itineraries.

Step 1: Agent a locates a product or service on host ha (the one on which
the agent runs) that it wishes to purchase, and requests a signed offer
describing the subject and terms of the purchase.

Step 2: Host ha provides the requested offer as well as the selector string
defined in the ecash protocol.

Step 3: Agent a forwards the offer and the selector string to its co–
operating agent b.

Step 3: Agent b validates the offer’s signature. In order to do so, it veri-
fies that the identity of the offer’s signer matches the one determined
from the authenticated channel, and that the offer’s signature is valid.
It goes on to verify the terms of the offer. If the verification fails then
a is notified of the result and the protocol is aborted.

Step 4: Agent b stores the offer (if ha later on repudiates having made
that offer then its signature may be used as a proof), transfers its
share of m to a, and opens the selected halves of the identity strings
by sending the appropriate key shares as well.

Step 5: Agent a passes the data on to ha.
Step 6: Host ha reconstructs the money order m, verifies the bank’s

signature and makes sure that agent b properly opened the selected
halves of the identity strings. The ecash protocol goes on as described
in [8]. If the verification fails then the agents are notified, and the
protocol is aborted.

Step 7: Host ha delivers the purchased goods.

Security of the protocol: Clearly, host ha cannot manipulate the pay-
ment decision in step 3 without collaborating with hb. Neither of the
hosts involved can steal the money order without the help of the other
(or breaking into the remote host). Neither can host ha alter, invalidate or
delete its offer after step 4. Of course, either the host or the co–operating
agents may terminate the protocol at will. However, this is a general
problem of electronic payment protocols.

However, any two hosts may profit from a joint attack on the cooperat-
ing agents by sharing the additional wealth gained from defrauding the
agents compared to the profit gained from honest behavior. Therefore
the domains of both agents’ itineraries must be chosen with great care
in order to assure (Ha × Hb) ∩ R = ∅ holds with reasonable confidence.



Security can be improved by additional measures [6] which ensure that
payment can only be made by b while being on particular hosts.

5 Discussion and Conclusions

In this paper, we introduced the concept of co–operating agents as well
as the basic principles on which protocols for mutual protection of such
agents rest. These principles were illustrated by giving two example proto-
cols, one for recording the actual itinerary taken by free–roaming agents,
and one for protecting ecash payments with co–operating agents.

The ability to determine the actual route taken by an agent in principle
allows further improvements of the security of agents against unautho-
rised and unnoticed manipulation. Hosts may commit to changes in the
structure of an executed agent by digitally signing incremental logs of
the agent’s state upon its migration. According to the recorded route,
the chain of signatures can be validated. Hence, in addition to strong
forward integrity [4] co–operating agents may provide resistance against
truncation and erasure with non–repudiation. Hosts which do not want
to forward agents to the servers of certain competitors might still do so.
However, the itinerary of the cooperating agent will always show this fact.

However, the ability of co–operating agents to mutually protect them-
selves relies crucially on the assumption that no pair of hosts chosen from
both agent’s itineraries collude. This precondition must be ensured with
reasonable confidence. The most simple solution is to have one agent mi-
grate to a trusted host while the other agent is free to roam the network.
In this degenerate case, co–operating agents reduce to the trusted third
party concept with the important difference, that even the trusted third
party need not be fully trusted. Therefore, given a sufficient number of
agent servers in the Internet, even a randomised strategy might be suffi-
cient: One itinerary is randomly chosen and fixed while the second agent
is free to choose its next hop at run time. The randomised strategy is
based on the assumption that the sets of collaborating hosts are small
compared to the number of available hosts. The overall security might be
improved by complementing the approach taken in this paper with re-
search in agent routing policies such as the one indicated by Swarup [9].

In particular, the ecash adaption protocol illustrates how distributed ap-
plications based on mobile agents may be securely deployed while preserv-
ing in particular the autonomy of mobile agents as well as their ability to



perform useful tasks off–line, and maintain confidence in the delegation
of authority as well.

In summary, protocols based on co–operating agents have merit since they
are less susceptible to attacks by coalitions of hosts than single agents.
The underlying principle is a generalization of the trusted third party
concept which is less restrictive and easier to meet.

We plan to implement and evaluate the protocols described in this paper
within the Java–based SeMoA platform (Secure Mobile Agents). SeMoA
denotes an ongoing development project undertaken by the Fraunhofer
Institut für Graphische Datenverarbeitung, with the goal of exploring and
developing techniques and architectures allowing secure deployment of
mobile agent technology in the area of multimedia and e–commerce ap-
plications.

6 Acknowledgements

I would like to thank the reviewers for their extensive comments on the
initial manuscript, which were most valuable for improving the quality of
this paper.

References

1. Berkovits, S., Guttman, J. D., and Swarup, V. Authentication for mobile
agents. In Vigna [13], pp. 114–136.

2. Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis, A. he role of trust
management in distributed systems security. In Secure Internet Programming [14].

3. Chess, D., Grosof, B., Harrison, C., Levine, D., Parris, C., and Tsudik, G.

Itinerant agents for mobile computing. IEEE Personal Communications (October
1995), 34–49.

4. Karjoth, G., Asokan, N., and Gülcü, C. Protecting the computation results
of free–roaming agents. In Proceedings of the Second International Workshop on
Mobile Agents (MA ’98), K. Rothermel and F. Hohl, Eds., vol. 1477 of Lecture
Notes in Computer Science. Springer Verlag, Berlin Heidelberg, September 1998,
pp. 195–207.

5. Riordan, J., and Schneier, B. Environmental key generation towards clueless
agents. In Vigna [13], pp. 15–24.

6. Roth, V., and Jalali, M. Access control and key management for mobile agents.
Computers & Graphics 22, 3 (1998). Special issue Data Security in Image Com-
munication and Networks.

7. Sander, T., and Tschudin, C. F. Protecting mobile agents against malicious
hosts. In Vigna [13], pp. 44–60.



8. Schneier, B. Applied Cryptography, 1 ed. John Wiley & Sons, Inc., 1994, section
6.7, pp. 120–122. Digital Cash Protocol #4.

9. Swarup, V. Trust Appraisal and Secure Routing of Mobile Agents. DARPA
Workshop on Foundations for Secure Mobile Code, Monterey, CA, USA, March
1997. Position Paper.

10. Swarup, V., and Fabrega, J. T. Understanding trust. In Secure Internet Pro-
gramming [14].

11. Tschudin, C. Apoptosis — the programmed death of distributed services. In
Secure Internet Programming [14].

12. Vigna, G. Cryptographic traces for mobile agents. In Mobile Agents and Security
[13], pp. 137–153.

13. Vigna, G., Ed. Mobile Agents and Security, vol. 1419 of Lecture Notes in Computer
Science. Springer Verlag, Berlin Heidelberg, 1998.

14. Vitek, J., and Jensen, C. Secure Internet Programming: Security Issues for
Mobile and Distributed Objects, vol. 1603 of Lecture Notes in Computer Science.
Springer-Verlag Inc., New York, NY, USA, 1999.

15. Yee, B. S. A sanctuary for mobile agents. In Secure Internet Programming [14],
pp. 261–273.


