
The SeMoA and CODEC Code Conventions

Volker Roth�, Ulrich Pinsdorfy, Jan Petersz and Peter Ebingerx

Fraunhofer Institut f�ur Graphische Datenverarbeitung

Fraunhoferstr. 5

64283 Darmstadt

Germany

Version 0.2

30th July 2004

�vroth@igd.fraunhofer.de
yulrich.pinsdorf@igd.fraunhofer.de
zjan.peters@igd.fraunhofer.de
xpeter.ebinger@igd.fraunhofer.de

1

Contents

1 Introduction 3

1.1 Motivation . 3

1.2 Related Documents . 3

1.3 Goals . 4

2 Conventions 5

2.1 File Management . 5

2.2 File Organization . 6

2.2.1 Package and Import Statements 6

2.2.2 Class and Interface Declarations: 8

2.3 Indentation . 9

2.3.1 Line Length . 9

2.3.2 Wrapping Lines . 9

2.4 Comments . 11

2.4.1 Implementation Comments 11

2.4.2 Documentation Comments 11

2.5 Declarations . 12

2.5.1 Number Per Line . 12

2.5.2 Initialization . 13

2.5.3 Placement . 14

2.6 Statements . 14

2.7 White Space . 15

2.8 Naming Conventions . 15

2.9 General Implementation Rules 15

A Example Code 16

2

1 Introduction

The key words \MUST", \MUST NOT", \REQUIRED", \RECOMMENDED",
\SHOULD", \SHOULD NOT", \MAY", and \OPTIONAL" in this document are
to be interpreted as described in RFC 2119.

1.1 Motivation

This document contains guidelines for writing Java code within the SeMoA1

and the CODEC project. More precisely, it refers to a number of exist-
ing style guides, and amends or modi�es them as to reect the particular
"avour" which shall be promoted in this document.

There are good reasons to have a style guide and to adhere to it. From Sun
Inc.'s document \Java Code Conventions"2 I quote:

\Code conventions are important for programmers for a num-
ber of reasons:

� 80% of the lifetime cost of a piece of software goes to main-
tenance.

� Hardly any software is maintained for its whole life by the
original author.

� Code conventions improve the readability of the software,
allowing engineers to understand new code more quickly
and thoroughly.

� If you ship your source code as a product, you need to make
sure it is as well packaged and clean as any other product
you create.

For the conventions to work, every person writing software must
conform to the code conventions. Everyone."

1.2 Related Documents

Writing a proper code style from scratch is a huge amount of work. It is
prudent to build on well established code conventions as much as possible,

1http://www.semoa.org
2http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html

3

and to deviate only in places worth the trouble. In particular, Sun Inc. al-
ready de�ned code conventions for writing Java code which are obligatory
for all programmers working with this programming language.

Newcomers to the language MUST �rst get familiar with the Java language
style conventions as given in Section 6.8 of \The Java Language Speci�ca-
tion"3.

The Java Development Kit (JDK) comes with a tool called javadoc, which
can create JavaDoc documentation automatically based on documentation
comments in the Java source code. Programmers following this style guide
MUST use the documentation comments (appropriately). The syntax of
JavaDoc documentation comments is explained in Chapter 18 of \The Java
Language Speci�cation". Further information on how to use JavaDoc is
given in \How to Write Doc Comments for Javadoc"4.

Information on how to use javadoc to generate JavaDoc documentation
from source �les comes with the JDK5. Programmers following this style
guide SHOULD be familiar with this document as well.

The basis of this code style are the \Java Code Conventions"6 (JCC).
Readers of this document MUST be familiar with the conventions described
therein. Occasionally I will mark sections which deviate from the JCC by
means of margin paragraph.

Advanced users of this code style SHOULD read (and adhere to) the \Re-
quirements for Writing Java API Speci�cations"7 document.

Programmers working on security-sensitive code MUST follow the \Security
Code Guidelines"8.

1.3 Goals

The human visual system works according to a small set of psychological
rules when grouping and recognizing objects. These rules include but are not
limited to similarity, proximity, continuity and orientation. Code can be
read and understood much easier if meaningful blocks of code are arranged

3http://java.sun.com/docs/books/jls/html/index.html
4http://java.sun.com/products/jdk/javadoc/writingdoccomments/index.html
5docs/tooldocs/solaris/javadoc.html
6http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
7http://java.sun.com/products/jdk/javadoc/writingapispecs/index.html
8http://java.sun.com/security/seccodeguide.html

4

and formatted in agreement with these general rules. A major technique is
indentation. In contrast to ragged edges which are hard to follow and to
read, proper indentation produces recognizable straight edges that are used
by the human visual system as a guide (continuity, orientation). The use
of blank lines supports grouping of blocks of code that "belongs together",
and to set them apart from "other" code (proximity). Consistent program-
ming patterns and style support recognition and thus understanding of code
(similarity).

The goal of this codestyle is to deploy these general rules as much as possible,
and to achieve a high level of consistency throughout the code.

Remember, always comment and format your code in a clear fashion, such
that others can understand and leaf through it like a breeze through a freshly
napalmed forest.9 Now, let's get down to business.

2 Conventions

You want you a paradise, the atline advised, when Task ex-

plained his situation.

| William Gibson, "Neuromancer"

2.1 File Management

All Java (.java) �les and class (.class) �les MUST be kept in a directory
hierarchy that resembles the package structure of the classes, starting from
a base directory. Java �les and their corresponding class �les SHOULD be
kept in the same directory.

For all practical purposes it is RECOMMENDED that a consistent directory
structure is used by all team members. Use of a version control system such
as CVS is also RECOMMENDED. Each team member SHOULD have a private
workspace in addition to the central repository where master �les are kept.
A sample structure of a private workspace is illustrated below:

9Quoted from "Snow Crash", Neil Stephenson ;-)

5

Path Comment

java Base directory

java/doc/api JavaDoc API documentation

java/ext Customized Java Extensions

java/cvs Workspace for source tree

java/cvs/classes Java and class �les

java/cvs/conf Master Make�les and scripts

java/cvs/docs Dokumentation

Programmers MUST copy/checkout project �les they work on from the
project's class repository into their workspace and test them there. Af-
ter successful modi�cation and testing, the classes MUST be passed to the
repository manager. The repository manager is the person responsible for
the maintainance and integrity of the repository. He SHOULD review the
classes for quality, stability, proper documentation, consistency, interoper-
ability with the classes in the repository, and adherence to the code con-
ventions before checking them into the repository. If classes do not meet
the criteria, they should be returned to the programmer for correction. The
repository manager MUST announce changes in the repository to all team
members. Team members other than the repository manager MUST NOT

modify or write to the repository unless they want their arms hacked o�
(they shouldn't be able to do that in the �rst place).

2.2 File Organization

A �le consists of sections that should be separated by blank lines and anDi�ers from JCC, Sec. 3.1

optional comment identifying each section. Files longer than 1500 lines are
cumbersome and should be avoided. Each Java source �le contains a single
class or interface, inner classes are permitted. Java source �les have the
following ordering:

� Beginning comments such as copyright notice or disclaimer, formatted
as a block comment (see Section 2.4.1).

� Package and import statements.

� Class and interface declarations.

2.2.1 Package and Import Statements

The �rst non-comment line in a Java �le MUST be a package statementAmends JCC, Sec. 3.1.2

6

/* The copyright notice goes here, as well as the

* obligatory refusal to assume any responsibility

* on what results from using the code that follows

* below (given that the license terms permit using

* the code for any reasonable purpose at all).

*/

package codec.pkcs7;

import codec.InconsistentStateException;

import codec.asn1.ASN1Integer;

import codec.asn1.ASN1ObjectIdentifier;

import codec.asn1.ASN1RegisteredType;

import codec.asn1.ASN1Sequence;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.security.AlgorithmParameters;

import java.security.GeneralSecurityException;

import java.security.InvalidAlgorithmParameterException;

import java.util.NoSuchElementException;

import javax.crypto.Cipher;

import javax.crypto.SecretKey;

Figure 1: An example that shows how to format package and import state-
ments.

(put only temporary classes used for testing into the default package; such
classes are not subject to code conventions). After that, import statements
can follow.

Sort import statements into sections according to the general source from
which they stem, and separate these sections by a single blank line. Within
sections, sort import statements �rst according to common packages pre�xes
and second according to alphabetical order. Prefer direct enumeration of
classes over asterisk forms. An example is given in Figure 1.

In Figure 1, the second and the third sections contain packages on which
the team is working (codec), and the following section contain packages
distributed with the JDK. References to a commercial library of Java classes
used by the team (e.g. acme.*) would get a section of their own.

7

2.2.2 Class and Interface Declarations:

Below, I describe the parts of a class or interface declaration, in the order
that they MUST appear.

Class/interface documentation comment: See Section 2.4.2 for a de-
scription of what must or should appear in this comment. Do not put a
blank line between this part and the next. The comment MUST start in
column 0 if the primary class/interface in the �le is declared, and MUST be
indented if it is an inner class/interface.

class or interface statement: Wrap lines as appropriate; put the initial
curly brace 'f' in a new line, aligned to the same column as the start of the
class/interface declaration statement. Do not put a blank line between this
part and the next.

Class (static) variables: As in JCC �rst the public class variables,
then the protected, then package level (no access modi�er), and then the
private. Separate each variable declaration from the preceeding one by one
blank line. Insert a blank line between the last class variable declaration and
the �rst instance variable declaration.

Instance variables: Declare instance variables (non-static) in the same
order as the class variable declarations, using one blank line as a separator.

Constructors: Separate the �rst constructor from the last variable dec-
laration by two blank lines. Put two blank lines between constructors and
between constructors and methods. Start with simple constructors (few pa-
rameters) to more complex ones (more parameters). Put no spaces between
a constructor name and the paranthesis '(' starting its parameter list.

Methods: Grouping of methods is as described in JCC, Sec. 3.1.3. Put no
spaces between a method name and the paranthesis '(' starting its parameter
list.

8

Inner classes: Inner classes not declared ad-hoc in a method call (e.g.
when calling the AccessControllerwith a short PrivilegedAction)MUST
be declared after the primary class of the class �le, before the ending curly
brace 'g'.

Documentation comments (see Section 2.4.2 MUST not be separated from
the commented section by a blank line.

2.3 Indentation

Four spaces MUST be used as the unit of indentation. [Tab] characters
MUST NOT be used in source �les.

2.3.1 Line Length

ProgrammersMUST format their code to a width of at most 72-80 characters.

2.3.2 Wrapping Lines

When expressions do not �t into a single line, break according to the fol-
lowing principles:

� Break after an opening paranthesis '(' if it is not part of a cast.

� Break before an operator.

� Prefer higher-level breaks to lower-level breaks.

� Indent the new line.

If the wrapped line still does not �t into one line then consider a vertical
orientation of the sub-expressions (see reEncryptData()), as illustrated in
Figure 2.

In general, keep the orientation of your code vertically rather than hori-
zontally. Avoid to many nested scopes. If necessary, use break, continue,
throw, and return to atten nested scopes.

In particular, this di�ers from the 8 character rule in the JCC, which squishes Di�ers from JCC, Sec. 4

code up against the right margin too fast, and causes irregular and some-
times confusing layouts.

9

/* PREFERRED

*/

buf = encryptData(

secretKey, bulkEncryptionAlgorithm, algorithmParameters);

buf = reEncryptData(

secretKey,

bulkEncryptionAlgorithm,

algorithmParameters,

reEncryptionKey,

reEncryptionAlgorithm,

reEncryptionParameters

);

/* PREFERRED (consistent 4-character indentation)

*/

buf = transformDataByFooMethod(

methodID, principal, dataSource, mode);

/* AVOID (8-spaces rule from JCC)

*/

buf = encryptData(secretKey, bulkEncryptionAlgorithm,

algorithmParameters)

/* AVOID

*/

buf = transformDataByFooMethod(methodID, principal,

dataSource, mode)

Figure 2: Do's and dont's of indentation; note the di�erences to JCC, Sec. 4.

10

2.4 Comments

Please refer to the JCC, Sec. 5 for an explanantion of di�erences between
implementation and documentation comments. All documentation MUST

be done in English. In terms of language, this is the lowest common denom-
inator of our profession.

2.4.1 Implementation Comments

Programs SHOULD have three styles of implementation comments: block, Di�ers from JCC, Sec. 5.1

trailing, and end-of-line. Please note that in contrast to the JCC no single-
line comments are mentioned. Single-line comments SHOULD be formatted
like block comments.

Block comments within a code section SHOULD be preceeded by a blank line
unless the preceeding non-empty line contains only a single curly brace 'f'.
In that case the blank line SHOULD be omitted. The single curly brace still
leaves enough empty vertical space such that the preceeding code section
and the block comment are perceived as separate.

Block comments MUST be formatted as follows:

/* Here is a block comment. Maybe it's just a single

* line, or multiple lines if necessary. Code follows

* directly without further blank lines.

*/

someVar = obj.getSomeValue();

Programmers SHOULD use trailing comments rather than end-of-line com-
ments for commenting lines of code. In general, end-of-line comments
SHOULD be used only to comment out code. Moreover, trailing comments
SHOULD be used sparingly, e.g. for commenting elements in static initializ-
ers of arrays as illustrated in Figure 3. For regular code, preceeding block
comments SHOULD be used rather than trailing comments.

2.4.2 Documentation Comments

The general conventions set forth in JCC, Sec. 5.2 hold. However, program-
mers SHOULD use the @throws tag to document exceptions rather than
@exception. If the text after a @param, @return, or @throws tag (give
tags in that order) does not �t in one comment line then the line must be

11

/**

* A hypothetical array of valid type identifiers,

* defined in a static (class) variable. Similarities

* to ASN.1 are purely coincidental, of course.

*/

private static String[] typename_ =

{

null, /* End of contents marker */

"Boolean", /* Tag [1] */

"Integer", /* Tag [2] */

null, /* BitString not yet supported */

"OctetString" /* Tag [4] */

}

Figure 3: Prefer trailing comments over end-of-line comments. Prefer blobk-
comments over trailing comments.

wrapped and the new lines MUST be indented by 2 characters measured
from the column of the tag's @ character.

All checked exceptions thrown by a method or constructor MUST be docu-
mented as well as all unchecked exception thrown explicitly by that method
or constructor. Unchecked exceptions that are thrown implicitly (e.g.
ArrayIndexOutOfBoundsException) SHOULD also be documented if they
must be expected even in regular operation of a class rather than scarce
error conditions. An example is given in Figure 4.

The tagged paragraphs MUST be separated from the general comments by
a blank comment line (a line with only an asterisk). Keywords of the java
language MUST be typeset in <code></code>. References to classes, argu-
ments, and methods MUST either be typeset in <code></code> or by means
of f@link [#]ref refereeg. The creation of links is encouraged, yet pro-
grammers shouldn't overdo it.

2.5 Declarations

2.5.1 Number Per Line

Similar to the JCC, programmers MUST NOT put more then one declaration
in a single line. Declarations SHOULD be formatted in triangular form, asDi�ers from JCC, Sec. 6.1

illustrated in Figure 5. In other words, declarations SHOULD be sorted �rst
according to the length of the type identi�er, and second according to the

12

/**

* Checks if the bytecode of a class file implements

* <code>finalize()</code>.

*

* @param code The byte array that contains the

* bytecode of a class.

* @exception SecurityException if the class in

* <code>code</code> implements <code>finalize()

* </code>.

* @exception ArrayOutOfBoundException if the

* bytecode of the class has a bad format, e.g. its

* constant pool is corrupted.

*/

public void filterClass(File file) throws ...

Figure 4: Illustrates general formatting and indentation of doc comments.

AlgorithmParameterSpec spec;

ASN1ObjectIdentifier oid;

ASN1OctetString octets;

Attributes attributes;

Attribute attribute;

Signature sig;

String sigalg;

String mdalg;

Figure 5: Formatting of variable declarations in methods and constructors
should have a triangular form, sorted �rst according to the length of the
type identi�er and second according to the length of the variable name.

length of the variable name. Type identi�ers and variable names SHOULD
be separated by a single space. The JCC propose a vertical alignment (see
JCC, Sec. 6.1). However, this often creates undesireable wide runs of spaces
because one type has a very long identi�er while the average type identi�er is
much shorter. The formatting proposed in this style usually creates a clear
diagonal line which separates type identi�ers from variable names pretty
clearly, in particular when used in conjunction with syntax highlighting.

2.5.2 Initialization

In this section I enter a territory which must probably be designated as be- Di�ers from JCC, Sec. 6.2

ing "religous". However, programmers MUST NOT initialize variables where
they are declared unless it is a class (static) or instance variable. Joint

13

declaration and initialization encourages the attitude that "it's ok to create
variables in an ad-hoc fashion" { it isn't.

2.5.3 Placement

All declarations MUST be done at the beginning of the block/scope for which
they are valid, after the opening curly brace 'f' of that scope. There is no
excuse for not doing this. Avoid declarations that hide declarations at
higher levels (compare JCC Sec. 6.3).

2.6 Statements

Each line MUST NOT contain more than one statement. For compound
statements (a list of statements enclosed in curly braces "f statements g")
the following rules hold:

� The enclosed statements MUST be indented one more level than the
compound statement.

� Both the opening and the closing brace MUST begin a new line, and
MUST be indented to the level of the compound statement. Additional
statements MUST NOT be on the same line as the curly braces. This
di�ers considerably from the JCC, Sec. 7. However, my experience
shows that this produces code that is much easier to read.

� Braces MUST be used around all statements, even single statements,

when they are part of a control structure, such as a if/else, or for
statement.

One exception from the rule is tolerated. A try statement is three characters
wide, which is one less than the usual indentation. For this reason, program-
mers can put the brace that follows the try statement directly (without a
space) behind the try statement, such that it reads tryf. The indented
block of compound statements still stands out clearly from the surrounding
code, which is the goal after all.

Apart from the di�erences mentioned above, the conventions described in
the JCC, Sec. 7 hold.

14

Name Type

i int or Iterator
e Exception in catch()fg clauses
o Object

in InputStream

out OutputStream

bis ByteArrayInputStream

bos ByteArrayOutputStream

fis FileInputStream

fos FileOutputStream

Table 1: Naming conventions for temporary variables.

2.7 White Space

The JCC, Sec. 8.2 hold, with the following exception: casts MUST NOT be
followed by a blank.

2.8 Naming Conventions

This section extends the naming conventions laid down in Section 9 of the
\Java Code Conventions". Programmers SHOULD use the \common names"
for temporary variables given in Table 2.8 whenever appropriate. The names
of instance variables and class variables which are not declared publicMUST
have a trailing underscore. Examples and violations of this rule are given
below for illustration.

public boolean flag ; /* WRONG!! */

protected List members; /* WRONG!! */

public boolean flag; /* CORRECT */

protected List members ; /* CORRECT */

The trailing underscore makes it easy to distinguish local variables from
non-local ones and makes constructions such as this.members superuous.

2.9 General Implementation Rules

Programmers MUST build on the Collection Framework rather than those
classes in java.util which are superseded by the Collection Framework.

15

In particular, Enumeration, Vector, and HashTable MUST NOT be used
unless a particular unavoidable interface requirement mandates use of these
classes. If e.g. a Sun API requires that a particular implementation needs
to return an instance of Enumeration then consider using a Collection

instead and wrap its Iterator in a DE.FhG.IGD.util.Enumerater (if you
have this class). The Enumerator takes an Iterator and implements both
the Iterator interface as well as Enumeration.

The conventions described in this document are directed at the devolpment
of mobile agents software, which is security critical. A severe threat comes
from Denial of Service (DoS). One way to deny service to other threads is
to grab class or instance locks. This can be avoided if classes and instances
synchronize on private lock objects instead. A typical declaration of such a
lock object looks like this:

/**

* My private instance lock object. Serves secure

* synchronization.

*/

private Object lock_ = new Object();

Do not hardcode magic numbers. Better declare a public static final

variable with that value. This allows to change values easily and improves
readability and understanding of your code. Do not use arrays or classes
whose instances are mutable in this way. Attackers can modify these de�-
nitions if they are declared as public.

A Example Code

/* Copyright 2000 Fraunhofer Gesellschaft

* Leonrodstr. 54, 80636 Munich, Germany.

* All rights reserved.

*

* You shall use this software only in accordance with

* the terms of the license agreement you entered into

* with Fraunhofer Gesellschaft.

*/

package codec;

import java.util.HashSet;

import java.util.Iterator;

import java.util.LinkedList;

import java.util.NoSuchElementException;

16

/**

* This class provides a thread pool with a given capacity (number of

* threads). The pool can handle as many concurrent jobs as there are

* threads in it. A job consists of a <code> Runnable</code> that is passed

* to the pool's <code> run(Runnable)</code> method. A job thread is removed

* from the pool while it works on a job, and re-enters the pool after

* completition of the job.

*

* <p>

* The capacity can be changed at runtime. The number of allocated threads

* will then change dynamically to the new capacity. New threads will be

* created by the pool as required. If the pool's capacity shrinks then as

* many surplus threads as there are in the pool will be released while

* threads that completed a job will enter the pool only if there is room

* for them. Hence, if lots of jobs are requested then the actual capacity

* will shrink only after enough threads are idling in the pool such that

* the surplus returning threads are rejected and terminate.

* </p>

*

* <p>

* The threads in the pool are unaffected by exceptions thrown by the job

* objects. However, threads idling in the pool will terminate and reduce

* the capacity if they are interrupted.

* </p>

*

* @author Volker Roth

* @version $Id: example.tex,v 1.1 2001/05/21 12:20:48 vroth Exp $

*/

public class ThreadPool extends Object

{

/**

* The maximum number of threads spawned by a <code> ThreadPool</code>.

*/

public static final int MAX_THREADS = 1024;

/**

* The <code>ThreadGroup</code> for the threads of the pool.

*/

protected ThreadGroup group_;

/**

* The list that holds the idle threads.

*/

protected LinkedList idle_;

/**

* The list that holds the running (busy) threads.

*/

17

protected HashSet busy_;

/**

* Creates a thread pool with the given capacity. The threads be started

* and enter an idle state (blocked) until they are given a job.

*

* @param capacity The capacity of the thread pool.

*

* @throws IllegalArgumentException if <code>capacity </code> is out of

* the range [1, maximum number of threads].

*/

public ThreadPool(int capacity)

{

if ((capacity < 1) || (capacity > MAX_THREADS))

{

throw new IllegalArgumentException(

"Capacity "

+ capacity

+ " out of range [1, "

+ MAX_THREADS

+ "]");

}

idle_ = new LinkedList();

busy_ = new HashSet();

group_ = new ThreadGroup("Thread pool");

group_.setDaemon(true);

setCapacity0(capacity);

}

/**

* Schedules a job for execution. The job is given as a <a

* href="#java.lang.Runnable">Runnable. This object is switched to

* the context of the thread that subsequently runs

* that object. A <code>null</code> is ignored. If no thread is

* available then the call blocks until a thread becomes available.

*

* @param o the <code>Runnable</code> that does the job.

*

* @throws InterruptedException if the blocking wait is interrupted.

* @throws NoSuchElementException if the pool's capacity is zero. See

* also method {@link #join join()}.

*/

public void run(Runnable o) throws InterruptedException

{

ThreadPool.Entry entry;

int capacity;

if (o == null)

18

{

return;

}

while (true)

{

synchronized (idle_)

{

capacity = getCapacity();

if (capacity == 0)

{

throw new NoSuchElementException("Pool is empty!");

}

try

{

if (idle_.size() > 0)

{

entry = (ThreadPool.Entry)idle_.removeFirst();

busy_.add(entry);

break;

}

else

{

/* Wait for new capacities or completed

* jobs that free a thread.

*/

idle_.wait();

}

}

catch (ClassCastException e)

{

/* Can't happen. */

}

}

}

entry.run(o);

}

/**

* Called by thread pool entries to re-enter the thread pool after

* completition of a job. This method unblocks a waiting thread (if any)

* that may claim the now available thread for another job.

*

* @return <code>true</code> if <code>entry</code> should prepare to do

* another job, and <code>false</code> if it should terminate.

*/

19

private boolean addAndContinue()

{

Thread thread;

thread = Thread.currentThread();

synchronized (idle_)

{

if (busy_.contains(thread))

{

busy_.remove(thread);

idle_.addFirst(thread);

/* Notify waiting threads that the current

* thread is available again.

*/

idle_.notifyAll();

return true;

}

return false;

}

}

/**

* Returns the capacity of this <code>ThreadPool</code>.

*

* @return The capacity of this <code>ThreadPool</code>. If the capacity

* is 0 then the <code>ThreadPool</code> was shut down.

*/

public int getCapacity()

{

synchronized (idle_)

{

return idle_.size() + busy_.size();

}

}

/**

* Sets the capacity of this <code>ThreadPool</code>. The capacity is not

* instantly reduced, but degrades slowly when threads finish but are

* not re-inserted into the pool.

*

* @param capacity The capacity that is set for this thread pool.

*

* @throws IllegalArgumentException if <code>capacity </code> is out of

* the range [1, maximum number of threads].

*/

public void setCapacity(int capacity)

20

{

if ((capacity < 1) || (capacity > MAX_THREADS))

{

throw new IllegalArgumentException(

"Capacity " + capacity + " out of range [0, " + MAX_THREADS

+ "]");

}

setCapacity0(capacity);

}

/**

* Returns the current size of the thread pool.

*

* @return The current size.

*/

public int size()

{

return idle_.size();

}

/**

* Shuts down as many threads of the thread pool as possible, set the

* capacity to 0, and interrupts all remaining threads. As a result, the

* <code>ThreadPool</code> should be down pretty quickly unless some

* running jobs don't cooperate when they receive the interrupt.

*/

public void shutdown()

{

synchronized (idle_)

{

busy_.clear();

idle_.clear();

group_.interrupt();

group_ = null;

}

}

/**

* Sets the capacity of this <code>ThreadPool</code> without checking

* for illegal arguments. The capacity is not instantly reduced, but

* degrades slowly when threads finish but are not re-inserted into the

* pool.

*

* @param capacity The capacity that is set for this thread pool.

*/

private void setCapacity0(int capacity)

{

Iterator i;

21

Thread thread;

int current;

int delta;

int n;

synchronized (idle_)

{

current = getCapacity();

if (capacity == current)

{

return;

}

else if (capacity > current)

{

delta = capacity - current;

while (delta > 0)

{

thread = new ThreadPool.Entry();

thread.start();

idle_.addLast(thread);

delta--;

}

/* Notify waiting threads that new capacities

* are available.

*/

idle_.notifyAll();

}

else

{

delta = Math.min(idle_.size(), current - capacity);

for (n = 0; n < delta; n++)

{

thread = (Thread)idle_.removeFirst();

thread.interrupt();

}

delta = Math.min(busy_.size(), current - capacity - delta);

if (delta > 0)

{

i = busy_.iterator();

/* Threads removed from the busy set will not be

* able to enter the idle list again.

*/

22

while (delta > 0)

{

i.next();

i.remove();

delta--;

}

}

}

}

}

/**

* Removes the thread of caller from this thread pool.

*/

private void removeEntry()

{

Thread thread;

thread = Thread.currentThread();

synchronized (idle_)

{

if (busy_.contains(thread))

{

busy_.remove(thread);

}

else if (idle_.contains(thread))

{

idle_.remove(thread);

}

}

}

/**

* A thread in the ThreadPool. This thread automagically re-enters itself

* into the thread pool upon completition of the job delegated to it via

* the thread pool. Jobs are passed to this class using a

* <code>Runnable</code> object.

*

* @author Volker Roth

*/

protected class Entry extends Thread

{

/**

* The slave that is actually doing the job.

*/

private Runnable slave_;

/**

23

* A private lock object, just to make sure...

*/

private Object lock_ = new Object();

/**

* Creates a thread pool entry that re-enters itself into the given

* thread pool.

*/

public Entry()

{

super(group_, "Thread pool entry");

}

/**

* Runs the given job in this thread. The given <code>

* Runnable</code> is switched to this thread's context. Upon

* completition of the job, this thread is re-entered into the

* thread pool.

*

* <p>

* This method must only be called once after removing this entry

* from the pool. After that, discard the reference. This thread

* will re-enter the thread pool upon completition of the job. Then

* and only then it is safe to re-use this thread.

* </p>

*

* <p>

* Do not pass a <code>null</code> argument. The thread will then

* block forever and will not re-enter the pool.

* </p>

*

* @param o The <code>Runnable</code> that is to be run by this

* thread.

*

* @throws InterruptedException if the blocking wait is interrupted.

*/

protected void run(Runnable o) throws InterruptedException

{

synchronized (lock_)

{

while (slave_ != null)

{

/* Wait until the thread pool thread gets

* ready to roll (hence goes to sleep on

* the lock).

*/

lock_.wait();

}

slave_ = o;

24

/* Wake up the waiting thread pool thread.

*/

lock_.notifyAll();

}

}

/**

* The first thing this method (and this thread) does is to enter the

* owning thread pool.

*

* @throws SecurityException if the current thread is not this entry.

*/

public void run()

{

if (Thread.currentThread() != this)

{

throw new SecurityException("Illegal thread.");

}

while (true)

{

try

{

synchronized (lock_)

{

/* Wait until there is a job to do.

*/

while (slave_ == null)

{

lock_.wait();

}

}

}

catch (InterruptedException e)

{

/* We were interrupted while idling, so we

* bail out savely, and reduce the capacity

* of the pool by one in the process.

*/

removeEntry();

break;

}

setName("Thread pool entry: " + slave_.getClass().getName());

try

{

slave_.run();

25

}

catch (Throwable t)

{

System.err.println(

"[ThreadPool.Entry] Job died with an exception!");

t.printStackTrace(System.err);

}

setName("Thread pool entry: " + System.currentTimeMillis());

synchronized (lock_)

{

slave_ = null;

lock_.notifyAll();

}

if (!addAndContinue())

{

break;

}

}

}

}

/**

* Shuts the pool down, if it isn't already.

*/

protected void finalize()

{

try

{

if (getCapacity() > 0)

{

shutdown();

}

}

catch (Exception e)

{

/* Ignore */

}

}

}

26

