
Mobile Agent Interoperability Patterns and Practice

Ulrich Pinsdorf and Volker Roth
Fraunhofer Institut f̈ur Graphische Datenverarbeitung

Rundeturmstraße 6, 64283 Darmstadt, Germany

E-mail:{ulrich.pinsdorf |vroth }@igd.fhg.de

Abstract

A major setback for mobile agent technology is a lack of
interoperability between systems for mobile agents which
prevents them from reaching “critical mass.” In this pa-
per, we analyze the requirements for interoperability, and
present design patterns which support interoperability be-
tween systems for mobile agents. We tested our patterns by
adding support for Jade agents as well as for Tracy agents
within our own mobile agent serverSeMoA. The results of
our experiments and our conclusions are summarized.

Keywords: mobile agents, interoperability, design pat-
terns, security, Java

1. Introduction

A major setback for mobile agent technology is – apart
from a frequently cited absence of appropriate security
mechanisms – a lack of interoperability between systems
for mobile agents, which prevents mobile agents from
reaching “critical mass” for widespread application. In-
teroperability is required where systems of different ven-
dors come into contact with each other. More precisely, we
defineinteroperabilityof systems for mobile agents as fol-
lows:

Two mobile agent systems are interoperable if
a mobile agent of one system can migrate to the
second system, the agent can interact and com-
municate with other agents on this system (or
even remote agents), the agent can leave this
system, and it can resume its execution on the
next interoperable system.

For complex systems it is prudent to define a concise set
of interfaces and protocols where agents and their hosting

systems come into contact. With regard to systems for mo-
bile agents these contact points include but are not limited
to the following:

Communication: message transport and communication
language

Mobility: agent transport protocols, agent encoding

Security: agent authentication and state appraisal

General: agent setup and lifecycle, system interfaces

At the time of writing, we are aware of only one attempt to
provide means of interoperability among systems of mobile
agents, which is the MASIF proposal [10]. FIPA [2] is also
active in the standardization of agent mobility [8] issues,
but this particular thread of FIPA’s work focuses on a high
level of abstraction, and, to the best of our knowledge, the
document did not have much public scrutiny yet.

It is therefore fair to say that these existing standardiza-
tion efforts have not yet shown to beeffectiveto provide
actual interoperability among systems for mobile agents
with regard to all but the first category in the table given
above. This lack of effectiveness also impairs the effec-
tiveness of agent communication standards when applied
to mobile agents because delivery of messages to mobile
agents requires a system dependent interface.

Rather than following the top down approach to interop-
erability by means of standards, we chose to take a bottom
up approach based on voluntary interoperability with other
systems for mobile agents. Hence, we designed our own
systemSeMoA [13] in a way that, we hoped, would facili-
tate the task to provide true interoperability with other agent
systems. Our goal was to let agents of two well-known sys-
tems run in our own system unmodified. We chose the Jade
system and the Tracy system as targets. For simplicity, we
speak of theacmesystem whenever we refer to a system
other than our own system e.g., Jade [3] and Tracy [6].

1



The lessons we learned so far fall into two broad cat-
egories. First, we gained insight into design patterns that
help to build agent systems in a way that facilitate provision
of interoperability. Second, we gained insight in designs
that inhibit provision of interoperability. In this paper, we
wish to share our experience, and report the results of our
practical experiments. We concentrate on agent setup, life-
cycle, and system interfaces.

Section 2 gives an overview over the way mobile agents
are set up in our own mobile agent serverSeMoA, and
how these agents access server facilities such as mobility.
In Sect. 3 we present three case studies of varying level
of progress, targeted at providing interoperability with the
agent systemsJade, Tracy,andAglets.[6, 3, 1]. Our brief
conclusions are summarized in Sect. 4.

2. Agent Setup and Lifecycles

SeMoA takes a rather paranoid stance when it comes to
setting up agents. A mobile agent is transported by means
of aJava Archive(JAR), which contains the serialized state
of the agent among other data. Before the agent is unmar-
shalled and one of its classes is linked into the server’s JVM,
the archive’s contents have to pass a configurable pipeline
of security filters. The filters we provide support agent au-
thentication and integrity checks by means of digital signa-
tures, selected revealing of data with detection of protocol
intervleaving attacks [11], bytecode filtering, and more.

Once the agent is admitted to the server, a thread group
and class loader are created for this agent. A launcher thread
is spawned in this thread group, which takes care of unmar-
shalling the agent and later on becomes the first thread of the
agent. Although a malicious class of the agent may abuse
callbacks in theJava Serialization Frameworkto seize con-
trol of the thread in which the unmarshalling takes place,
this does not give the agent access beyond what it would
have been granted anyway.

Agents request migration by setting a ticket that points
to the desired destination. However, the server transports
the agent only after all threads in the agent’s thread group
have terminated. Again, we verify that serialization call-
backs were not used to spawn new threads. The invariant
we enforce in this way is that, at the time of agent trans-
port, no class of that agent is on any thread’s stack frame
any more (unless the agent successfully attacked the sys-
tems e.g., it hijacks the garbage collector thread by means
of sneaking a malicious implementation offinalize()
around our byte code filters).

When the agent instance is unmarshalled, its class name
is compared to one of several agent property strings that
are signed along with the agent’s static part by the agent’s
owner. In conjunction with class signing, this prevents ad-
versaries from substituting the principal agent class with an-

other runnable class that might be included in the agent.
The properties definition consists of a text file with

key/value pairs where the key is separated from the value
by an equals sign. Two more properties are mandatory. The
agent system typeproperty identifies the type of agent sys-
tem on which the agent was created e.g.,Jade, Tracy, Aglets,
or SeMoA. Theagent typeproperty identifies the system--
specific agent type in case multiple types are supported by
that system e.g.,Java for agents that are programmed in
Java, andshell for agents that are programmed in a shell
script language.

Based on a given agent system type and agent type,Se-
MoA’s lifecycle registryis queried for a matchinglifecycle
implementation.In other words, the lifecycle registry is a
factory [9] for the generation oflifecycle instancesthat han-
dle the agent’s actual lifecycle. The freshly generated life-
cycle instance wraps around the agent instance and trans-
lates betweenSeMoA’s agent lifecycle and the lifecycle of
the agent’s native system. In particular, it instantiates all
necessary components that make the agent instance believe
that it is running on its native system. Furthermore, the life-
cycle instance is responsible for the marshalling and unmar-
shalling of the agent instance, thus completely decoupling
the representation of agents fromSeMoA’s core.

Lifecycles are defined in terms of a deliberately simple
interface declaration with the methods

start()
stop()

suspend()
resume(ErrorCode err)

Agents resume their execution in the case of e.g., a failed
suspension, on migration errors, or at the end of their sus-
pension. If applicable, an error code is passed in order to
describe the reason why the execution is resumed.

Subsequent to setting up the lifecycle, the principal agent
thread is annotated with four facilities by means of sub-
classes ofInheritableThreadLocal :

Mobility context: provides methods to set destination
tickets, retrieve the agent’s name, and access more
agent-specific data.

Communication context: provides methods for sending
and receiving messages.

Environment: provides dictionary operations on a shared
space of objects, with a hierarchical name space for
the keys. All operations are subject to access con-
trol, and published objects may be wrapped into
proxys that implement varying degrees of separation
between callers and called objects.

Variables context: provides read access to an agent’s
properties, taken from the agent’s archive.



These annotations are inherited by all threads that are
spawned subsequently from the annotated thread. Hence,
they are available to all threads of an agent. Access to the
annotated facilities is granted based on an agent-specifictag
permission. This is a permission that is unique for each
agent instance in the server, and is assigned only to the
classes of that agent and its initial access control context.
This prevents threads of one agent from accessing facilities
that are assigned to another agent’s threads in the case of a
direct inter-agent method invokation.

The bottom line of this is that we need not rely on a spe-
cial agent class in order to make initial system hooks avail-
able to the agent, as is common in contemporary mobile
agent systems. By default, nativeSeMoA agents must im-
plement only theRunnable interface, although any other
interface or class could be supported easily as well. Ac-
cess to primitives such as migration and communication
are provided solely by means of thread annotations. These
approaches, the one based on an abstract agent class and
the one we took, are juxtaposed in Figs. 1 and 3. From
the perspective of interoperability, it is generally advanta-
geous to use interfaces as types rather than abstract agent
classes, because this allows an agent class to maintain type-
compatibility with multiple systems simultaneously.

For instance, we implemented a lifecycle factory for Jade
agents. As a side effect, programmers may write agents
based on the abstract Jade agent class, use Jade behaviors,
and still accessSeMoA’s facilities. Such Jade agents are
instantly mobile, and benefit transparently fromSeMoA’s
migration and security mechanisms.

3. Case Studies

The first step when integrating support for theacmesys-
tem is, of course, a thorough analysis of that system’s ar-
chitecture and agent lifecycle. Ideally, theacmesystem is
available in source code, with appropriate documentation.
To some degree, reverse engineering tools are helpful, in
particular those that can generate UML diagrams from Java
byte code.

The primary goal of this phase is to distinguish agent
support from its concrete implementation. Typically, the
analysis starts at the system’s abstract agent class. All
places must be identified, where this class is invoked. Anal-
ysis of these places reveals salient details of the system’s
agent lifecycle. Special attention must be given to thread
handling, and subtle assumptions that are relevant for the
agent’s functioning. Often, such details or not excessively
documented, or the documentation abstracts from the par-
ticularities of the implementation.

Whenever a method of the abstract agent class is in-
voked, its parameters and return values must be analyzed
for non-trivial types. Ideally, these parameters are of the

following types:

• Interface classes; the use of interfaces indicates that
the developers of theacmesystem anticipated alter-
native implementations of the system’s functionality.

• Isolated helper classes without references to other
acmeclasses; these classes can often be reused with-
out modification.

• Classes that resemble entry points to self-contained
subsystems that need no special adaption and can be
used as a whole (in other words, modules that can be
treated as a black box).

• Java standard classes

Jade’s communication package is a positive example of a
self-contained subsystem that can be adapted easily. Where
parameters do not fall into one of the aforementioned cat-
egories, the situation becomes complicated. The analysis
must recurse for these classes, and in the end a decision
must be taken to the effect whether the integration is feasi-
ble and worth the effort.

The next phase deals with the mechanisms used by
agents to access facilities such as migration and communi-
cation. The fewer and the more concise these mechanisms
are, the easier is it to emulate theacmesystem. Systems
that clearly define a limited set of interfaces to this purpose
are easier to interoperate with than systems that have depen-
dencies scattered all over the implementation.

Adaption of agent communication has the specific prob-
lem of addressing peer agents correctly. This is less
troublesome foracme agents that are created on aSe-
MoA server. Many agent systems use naming schemes
based on theUniform Resource Locator[4] syntax, for
instance something likewombat@gwork.org:40000/
strangeplace , where “wombat” is a name that can
be chosen freely by the agent’s creator. However,Se-
MoA allows no free choice of an agent’s name, instead
an agent’s name is computed implictly from a digital sig-
nature of its static part (see [14] for details). Implicit
names consist of SHA-1 [7] digests, hence are 20 bytes
long. For ease of reading, we give only 8 hexadeci-
mal nibbles in our examples, rather than the whole 40.
If the agent is created on aSeMoA server, and its im-
plicit name is computed asf42a1cc0 then the agent can
be given the namef42a1cc0@gwork.org:40000/
strangeplace in order to matchacme’ssyntax.

If the agent has its origin elsewhere, and is assigned a
human readable name such as “wombat”, then a suitable
mapping mechanism must be used by the lifecycle imple-
mentation in order to translate back and forth between these
names as required.

Our experience up to the time of writing shows that
agent communication is less of a problem when compared



to agent migration, though. Migration is often more tightly
interwoven in a system’s design and implementation. For
instance,SeMoA’s security policy requires that migration is
initiated only after all threads of the migrating agent have
terminated, a fact that is hardly taken into consideration by
programmers ofacmeagents. However, we do not wish to
sacrifice our security policy to interoperability. Termination
before migration prevents agents from repeatedly spawn-
ing copies, and refusing to terminate afterwards, thus effec-
tively flooding a network of agent servers. It is worth noting
that thefull mobility protocoldefined by FIPA enables this
type of attack by virtue of its specification, and requires that
at least the problem of asynchronous thread termination is
solved satisfactory. Consequently, a lifecycle implementa-
tion might have to defer execution of ago() statement to
the point where it got rid of stale threads that were spawned
in the agent’s thread group either by the agent itself or as a
consequence of a call to, for instance, Java’sAbstract Win-
dow Toolkit(AWT).

In summary, theacmesystem is probably straightfor-
ward to adapt if it:

• is available in source code, and well documented (no
surprise here);

• confines the dependencies between agents and the
system to a clear and well-defined set of interfaces;

• has a modular design, and anticipates alternative im-
plementations for its modules;

• models facilities that are required by mobile agents
separately;

• provide features and services in the form of agents
rather than specialized classes which must be adapted
or treated in special ways;

• pays attention to security.

To some degree, security has similar requirements as in-
teroperability – in both cases there shouldn’t be too many
drawbridges that lead into and out of your fortress, because
you have to put guards in front of each.

3.1. Jade

We used Jade Version 2.01 beta as the basis of our ex-
periments with Jade. Jade has a focus on agent communi-
cation and cooperation rather than mobility. Consequently,
the communication support is well developed whereas mi-
gration has only marginal support. Our goal was to run Jade
agents inSeMoA, without recompilation, and in a way that
allows Jade agents to communicate with other Jade agents,
where the peer agent can be either at the same server or at a
remote server.

The adpation of Jade was surprisingly straightforward,
and did not cause major problems. Jade agents are initial-
ized with a so-calledAgentToolkit implementation that
functions, from an agent’s point of view, as the principal
hook into the agent system.AgentToolkit is actually
an interface; theJadeLifecycle we developed forSe-
MoA implements this interface, and mediates betweenSe-
MoA and the Jade agent. All mappings could be handled in
the JadeLifecycle . Figure 2 shows an UML diagram
of the classes involved. Bold class names denote classes of
SeMoA, all other classes were taken from Jade.

Jade supports scheduled behaviors. This allows agents
to periodically repeat a specific action, or be invoked at par-
ticular times. This requires managing a global timer and
dispatcher thread, which is a responsibility of theAgent-
Toolkit implementation, and posed no difficulty.

Communication in Jade bases on CORBA, and is well
separated in a self-contained package. OurJadeLifecy-
cle reuses this package. At boot time,SeMoA activates a
message stub that is responsible both for dispatching incom-
ing messages as well as relaying outgoing messages. The
stub also takes care of translating from internal to external
addresses and vice versa. Our tests confirmed that intra- and
inter-platform communication between Jade agents works
fine. Furthermore, inter-platform also works fine between
agents at Jade servers andSeMoA servers with Jade sup-
port.

There is hardly any criticism we could raise on Jade’s
design with regard to our aims. A minor nuisance was
caused by some classes that were declared asprotected
or package private without obvious reason, among them
AgentToolkit . We changed the access modifiers to
public and recompiled these classes. Apart from this, we
had to make no changes.

3.2. Tracy

The integration of Tracy has been done based on the cur-
rent version (which is 0.54alpha). At time of writing, Tracy
agents are able to run, communicate, and migrate in a net-
work of SeMoA servers.

The architecture of the Tracy adapter classes is similar to
Jade. Figure 5 illustrates the design of ourTracyLife-
cycle and related classes as an UML diagram. Again,
bold class names denote classes ofSeMoA. The diagram
shows only a subset of the classes we developed in order to
support Tracy inSeMoA. Tracy distinguishes betweenmo-
bile agentsand system agents.The first ones are able to
migrate, whereas the latter have special privileges e.g., to
open a graphical user interface. Both inherit from the ab-
stract base classAgent , which we access from the lifecycle
class in order to control the agent.



The implementation of the inter-agent communication
mechanism was straight forward. Tracy agents communi-
cate by means of ablackboard.The blackboard acts as a hi-
erarchical name space where agents can deposit objects. We
wrapped a singleBlackboard instance in aSeMoA ser-
vice and published it at boot time inSeMoA’s shared object
environment. All instances ofTracyLifecycle access
this single blackboard service whenever an agent wants to
read or write messages.

Tracy also uses an intra-agent communication mecha-
nism which allows an agent to send messages to itself. This
is used e.g., to control the agent’s state of execution. In
order to adapt this behavior, the lifecycle registers itself as
listener of the agent’s message queue. Consequently, the
lifecycle is able to intercept and process all messages of that
particular agent instance.

More difficult than the implementation of communica-
tion support was to adapt Tracy’s migration concept. When-
ever a Tracy agent wants to migrate, it throws aWant-
ToMigrate exception. By assumption, this type of ex-
ception may not be caught by the agent. Instead, it is caught
by a server thread which processes the agent’s request. In
order to support this behavior, therun method ofTra-
cyLifecycle is implemented as a loop that catches the
exception and waits until all threads of the agent terminated.
In accordance withSeMoA’s security policy, an agent has
to throw the exception and terminate all spawned threads as
well. This also holds for theWantToDie exception, which
is used by Tracy, and which indicates that the agent wants
to terminate.

The adaption of the migration process itself was straight-
forward. SeMoA’s architeture supports different transport
mechanisms, which are distinguished by means of the pro-
tocol identifier of the target URL. Since Tracy agents always
use the protocoltracy for migration, we simply published
a handler instance for this protocol. This handler actually
uses a simple socket connection for transport. This allows
Tracy agents to migrate between differentSeMoA hosts. We
intend to provide a protocol handler for the real Tracy mi-
gration protocol as well, which is developed in cooperation
with the Tracy authors. Tracy’s transport layer is currently
redesigned [5], and we wish to provide interoperability with
the most recent version.

3.3. Aglets

Our experiments with Aglets were based on the Aglets
Software Development Kit Version 1.1 Beta. At first
sight, the Aglets framework has a highly modular de-
sign. Major parts of the Aglets framework are modeled
by means of interface classes and abstract classes (package
com.ibm.aglet ). This approach yields a generic sys-
tem structure that accounts for alternative implementations

of the core system’s functionality.
Concrete implementations of the abstract and interface

classes are found in packagecom.ibm.aglets . Unfor-
tunately, our code inspection revealed that frequently the
types of parameters were based on the concrete implemen-
tations rather than the interfaces and abstract classes defined
in com.ibm.aglet . For instance, the code referred to
LocalAgletRef , a concrete implementation of the ab-
stract classAgletStub , where a reference toAglet-
Stub would have been more appropriate. On other occa-
sions, the code reads

void setMessageManager(MessageManagerImpl)

rather than

void setMessageManager(MessageManager)

as one would have expected. This turned out to be a ma-
jor setback for our task. The reason appeared to be added
functionality that couldn’t be accessed properly by means of
the interface types. Using the concrete implementations as
parameter types worked around these limitations, although
this is generally not a desirable approach.

Figure 4 illustrates the design of theAgletLife-
cycle and related classes as an UML diagram. Class
names that are typeset in bold denote classes ofSeMoA.
Only a subset of the classes we developed in order to sup-
port Aglets in SeMoA are shown. The border line be-
tweenSeMoA and Aglets runs along the interfacesAglet-
Stub , AgletContext , and AgletProxy . The base
classAglet makes use of the two classesAgletID and
AgletInfo , which are actually just helper classes that
could be reused without modification.

The most difficult part posed the implementation of
AgletProxyImpl . Its corresponding implementation in
the Aglets system turned out to refer to a considerable
number of classes from packagecom.ibm.workbench .
These classes were so specific that reusing them did not
appear to be a viable solution. This complicated the im-
plementation ofAgletProxy , which is involved in agent
migration, communication, and remote control.

At the time of writing, we can run Aglets inSeMoA, and
these Aglets can dispatch messages to themselves. How-
ever, we cannot migrate Aglets at this point. This is subject
of future work.

4. Conclusions

In this paper, we presented a bottom-up approach to-
wards interoperability of mobile agent systems, which is
based on voluntary interoperability between selected agent
systems, rather than a top-down approach driven by stan-
dards, which are not available in the first place.



In particular, we presented a number of design ap-
proaches that facilitate the transparent support of agents of
other systems in our own mobile agent serverSeMoA. One
of the key features of our design is the modeling of agent
lifecycles by means of specialized lifecycle implementa-
tions that translate between a native lifecycle and the life-
cycles of adapted systems. Lifecycle implementations have
the task to make agents believe that they are running in a
native environment although they actually do not.

In the course of pursuing interoperability between dif-

ferent mobile agent systems we gained considerable insight
both in the particularities of Java as well as in the do’s and
do not’s of mobile agent system design.

At the time of writing, our work is far from complete,
yet we can already demonstrate a successful integration of
Jade and Tracy agents, as well as initial results from our
efforts to provide interoperability with Aglets. Our future
work will address migration protocols of theacmesystem,
so that agents are able to migrate back and forth to and from
SeMoA andacmeservers.

References

[1] Aglets Software Development Kit. Software project
at SourceForge, Internet resource at URLhttp://
sourceforge.net/projects/aglets/ .

[2] Foundation for Intelligent Physical Agents (FIPA). Inter-
net Web page at URLhttp://www.fipa.org . Version
current on November, 2001.

[3] F. Bellifemine, A. Poggi, and G. Rimassa. Jade pro-
grammers guide, June 2000. Available at URLhttp:
//sharon.cselt.it/projects/jade .

[4] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform
Resource Locators (URL). Request for Comments 1738, In-
ternet Engineering Task Force, December 1994.

[5] P. Braun and J. Eismann. Personal communication, 2001.

[6] P. Braun, C. Erfurth, and W. R. Rossak. An intro-
duction to the Tracy mobile agent system. Techni-
cal Report No. 2000/24, Friedrich Schiller University of
Jena, Computer Science Department, September 2000.
Available at URLftp://ftp.minet.uni-jena.de/
ips/braun/bericht-00-24.pdf .

[7] FIPS180–1. Secure Hash Standard. Federal Information
Processing Standards Publication 180–1, U.S. Department
of Commerce/National Bureau of Standards, National Tech-
nical Information Service, Springfield, Virginia, April 1995.
supersedes FIPS 180:1993.

[8] Foundation for Intelligent Physical Agents.FIPA Agent
Management Support for Mobility Specification, August
2001. Document PC00087B.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vissides.Design
Patterns. Addison Wesley Longman Publishing Co., De-
cember 1994. ISBN 0201633612.

[10] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Co-
vaci, B. Friedman, K. Kosaka, D. Lange, K. Omo, M. Os-
hima, C. Tham, S. Virdhagriswaran, and J. White. MASIF
– The OMG Mobile Agent System Interoperability Fa-
cility. In K. Rothermel and F. Hohl, editors,Proceed-
ings of the Second International Workshop on Mobile
Agents (MA ’98), volume 1477 ofLecture Notes in Com-
puter Science, pages 50–67. Springer Verlag, Berlin Hei-
delberg, September 1998. The MASIF specification is
available from URL: http://www.fokus.gmd.de/
research/cc/ecco/masif/doc/97-10-05.pdf .

[11] V. Roth. On the robustness of some cryptographic proto-
cols for mobile agent protection. InProc. Mobile Agents
2001, volume 2240 ofLecture Notes in Computer Science.
Springer Verlag, December 2001. Revised version of [12].

[12] V. Roth. Programming Satan’s agents. In1st International
Workshop on Secure Mobile Multi-Agent Systems, Montreal,
Canada, 2001.

[13] V. Roth and M. Jalali. Concepts and architecture of a
security-centric mobile agent server. InProc. Fifth In-
ternational Symposium on Autonomous Decentralized Sys-
tems (ISADS 2001), pages 435–442, Dallas, Texas, U.S.A.,
March 2001. IEEE Computer Society. ISBN 0-7695-1065-
5.

[14] V. Roth and J. Peters. A scalable and secure global tracking
service for mobile agents. InProc. Mobile Agents 2001, vol-
ume 2240 ofLecture Notes in Computer Science. Springer
Verlag, December 2001.



AgentSyst em
M obileAgent

<<abst ract>> FooAgent

Figure 1. Agents extend a well-known abstract class that provides the basic hooks into the system.

FooAgent
Lifecycle

<<abstract>>

Jade SeMoA

AgentToolkit

<<Interface>>
Agent JadeLifecycle

Figure 2. UML class diagram showing an implementation of the lifecycle pattern for interoperability
with Jade agents.

FooAgent

MobileAgent

<<Interface>> Communication

Hook

MigrationHook AnyHook

AgentSystem

Figure 3. Agents implement an interface as the primary type. Hooks into the hosting system are
modelled as separate facilities. In the case of SeMoA, an agent’s threads are annotated with facilities
such as agent mobility, communication, and access to shared object instances.



Lifecycle

<<abstract>>

FooAglet

SemoaStub

AgletLifecycle

AgletContextImpl
AgletContext

<<Interface>>

AgletProxy

<<Interface>>

0..n

1

0..n

1

AgletProxyImpl

AgletStub

<<abstract>>
AgletInfo

Aglet

<<abstract>>

AgletID

Figure 4. The UML class diagram shows an implementation of the lifecycle pattern for the interoper-
ability with Aglets.

Li fecycl e

<<abst ract >>

SeM oATracy

M obileAgent
AgentInterf ace

<<Interf ace>>

Sy st emAgent
Sy st emAgentInterf ace

<<Interf ace>>

Tra cyLi fecycl eAgent

Figure 5. UML class diagram showing an implementation of the lifecycle pattern for interoperability
with Tracy agents.


