
Concepts and Architecture of a Security-centric Mobile Agent Server

Volker Roth Mehrdad Jalali-Sohi

Fraunhofer Institut f̈ur Graphische Datenverarbeitung
Rundeturmstraße 6, 64283 Darmstadt, Germany

E-mail:{vroth |jalali }@igd.fhg.de

Abstract

Mobile software agents are software components that are
able to move in a network. They are often considered as an
attractive technology in electronic commerce applications.
Although security concerns prevail. In this paper we de-
scribe the architecture and concepts of the SeMoA server
– a runtime environment for Java-based mobile agents. Its
architecture has a focus on security and easy extendability,
and offers a framework for transparentcontent inspection
of agents by means offilters. We implemented filters that
handle agent signing and authentication as well as selec-
tive encryption of agent contents. Filters are applied trans-
parently such that agents need not be aware of the security
services provided by the server.

Keywords: autonomous agents, e-commerce, mobile agent
security, malicious host, distributed applications

1 Introduction

Mobile agents [1] push the flexibility of distributed sys-
tems to their limits since not only computations are dis-
tributed dynamically, the code that performs them is also
distributed. Information gathering and electronic commerce
are application areas in which mobile agent technology may
offer substantial benefits [2]. In the course of the European
ESPRIT Project AIMedia (Targeted Advertising on Interac-
tive Media) we developed a proof of concept application
based on mobile agent technology by which we demon-
strated some of the benefits that can be expected from us-
ing mobile agent technology (e.g. delegating a high-level
shopping task to a mobile agent [3]). In this article, we
describe the basic concepts and architecture of the mobile
agent server that was the basis of said application. The

server is still under active development at the Fraunhofer
Institute for Computer Graphics.

Security has been identified numerous times by different
researchers as a top criterion for the acceptance of mobile
agent technology. While some researchers decided to con-
centrate on mobile agents in general, others (including us)
decided to investigate the security aspects in particular. The
title of our platform –Secure Mobile Agents(SeMoA) – was
chosen to reflect this focus. We discuss the security mecha-
nisms supported by SeMoA in Sections 3 to 7. In Section 9
we summarize some open problems. Section 8 highlights
some related work and conclusions are drawn in Section 10.

2 Mobile Agents Benefits

Once let loose, mobile agents roam the network, seek in-
formation, and carry out tasks on behalf of their senders au-
tonomously. Upon return to their senders the agents present
the results of their endeavors. Meanwhile the user is freed
of the obligation to permanently monitor the application’s
progress. This makes mobile agents particularly useful in
mobile environments (disconnected operation), because no
permanent network connection must be maintained in order
to run the agent-based application. Mobile agents also offer
great benefits to applications in “wired” networks by adding
client-side intelligence and functionality to server-side ser-
vices unified under a homogenous access paradigm. Fur-
thermore, mobile agents offer considerable network band-
width savings because they can migrate to, and process
data, at the source of that data, which therefor need not be
shipped back and forth across the network. Applications
based on mobile agents are inherently distributed. Agents
are often independent of a particular hardware or operating
system, and can be deployed in heterogenous environments.

Several further advantages were claimed for mobile
agent in addition to those summarized above [2]. A recom-



mendable overview of some of the more frequently quoted
and generally accepted claims is given in [4].

In order to exploit benefits such as the ones described
above, mobile agent frameworks have to cope with a num-
ber of security threats. A mobile agent’s itinerary in general
spans a number of servers which might be run by competing
operators. Apart from monitoring, manipulating, and steal-
ing data from mobile agents,malicious hostsmight try to
abuse passing agents as Trojan Horses in attacks on compet-
ing servers while incriminating the agent’s owner in the pro-
cess. On the other hand, hosts have to be aware ofmalicious
agentsbreaking into the server in order to harm other agents
hosted by it, or to gain unauthorized system access. Mobile
agents make a perfect cover for viruses, worms, and Tro-
jan Horses. In particular, mobile agents might try to attack
remote hosts using innocent hosts as launch pads in order
to cover the tracks of the attacker. Both agents and servers
are threatened by attacks originating from outside the sys-
tem. Eavesdroppers might snoop on agents being transfered
over network connections hence compromising the privacy
of agents. They might also launch active attacks on servers
either directly or indirectly by manipulating agents during
transport. Network-based attacks on mobile agent systems
do not add new threats when compared to client/server ap-
plications, although the impact of a succesfull attack might
be much worse. A sound security model which is able to re-
sist these attacks is fundamental to business acceptance and
market exploitation of this fascinating technogy.

3 General Architecture

On designing the SeMoA server we decided that it shall
consist of a minimum lightweight core that is easily ex-
tended by means of (static) agents and a plugin mechanism.
This facilitates tailoring a server core to the specific needs of
a particular application domain. We did not want to fix a set
of security mechanisms beforehand but to keep the security
mechanisms extendable and adaptable to the requirements.
Any cryptographic protection mechanisms used in SeMoA
are designed and implemented on top of the JCA/JCE (Java
Cryptography Architecture & Extension [5, 6]) in order not
to become dependent on a single cryptographic technology.
The tasks of the SeMoA server can be summarized as fol-
lows:

• Load and install agents in the system.

• Sending stop signals to agents.

• Remove and dispatch agents.

• Maintain separation and anonymity of agents.

• Provide service management.

The architecture we came up with distinguishes between
agentsandservices. Agents own resources such as threads
and persistent storage space while services are meant to be
called by agents and hence run in the caller’s thread. Agents
may register, unregister, and request services; such services
can refer to (and thus borrow resources from) their owners.

Agents are maintained in a map which is indexed by
agent name. The agents map is a private object of the server
object. The value of a mapping defined in the agents map is
theagent context. The agent context doesnot represent the
agent’s environment (as for instance theAppletContext
does with respect to an Applet) but is an object that controls
the lifecycle of the agent it represents, and maintains refer-
ences to the various objects associated with an agent. This
wording is due to historical reasons and differs from the one
used by some other agent systems such asAglets.

Service management is handled by the serviceregistry
which is described in greater detail in Section 5. It is used
throughout the system as a shared space for publishing ob-
jects.

4 Security Architecture

SeMoA builds on JDK 1.31 and is a “best effort” to pro-
vide adequate security for mobile agent systems, servers
as well as agents. The security architecture of the SeMoA
server compares to an onion: agents have to pass all of sev-
eral layers of protection before they are admitted to the run-
time system (see Figure 2 for illustration) and the first class
of an agent is loaded into the server’s JVM.

The first (outer) security layer is atransport layer se-
curity protocol such as TLS [7] or SSL [8]. At the time of
writing, the SSL implementation is used that comes with the
Java Secure Socket Extension(JSSE) framework provided
by Sun Microsystems. This layer provides mutual authenti-
cation of agent servers, transparent encryption and integrity
protection. Connection requests of authenticated peers can
be accepted or rejected as specified in a configurable policy.

The second layer consists of a pipeline ofsecurity filters.
Separate pipelines for incoming agents and outgoing agents
are supported. Each filter inspects and processes incom-
ing/outgoing agents, and either accepts or rejects them. We
refer to this filtering procedure also ascontent inspection
in analogy to concepts known from firewalls. At the time
of writing, SeMoA features two complementary pairs of fil-
ters that handle digital signatures and selective encryption
of agents (signature verification and decryption of incom-
ing agents, encryption and signing of outgoing agents). An
additional filter at the end of the incoming pipeline assigns
a configurable set of permissions to incoming agents, based

1We recently moved from JDK 1.2 to JDK 1.3 to make use of its novel proxy generation features.



on information established and verified by preceeding fil-
ters. Permissions can be granted based on the authenticated
identities of the agent’s owner, the sponsor of its last state
change, and its most recent sender. Filters can be registered
and unregistered either dynamically or at boot time of the
SeMoA server either programatically or by means of con-
figuration files.

Subsequent to passing all security filters, a sandbox is set
up for the accepted agent (which can be regarded as layer
four). Each agent gets a separate thread group and class
loader. The agent is unmarshalled by a thread that is al-
ready running within the agent’s thread group and becomes
the first thread of that agent. Marshalling is done by the very
same thread after all remaining threads in the agent’s thread
group have terminated. Since the Serialization Framework
of Java provides callbacks that pass control back to objects
to be serialized, the thread once again blocks until no more
threads remain in the agent’s thread group. Only then does
SeMoA handle any migration requests of that agent. This
prevents agents from flooding a network of agent servers by
migrating and refusing to terminate at the same time.

The classes brought by an agent are annotated withtag
permissionswhich are generated dynamically and which are
unique for each agent. Whenever e.g. an agent attempts to
modify a thread group the current thread is traced back to
the corresponding agent’s thread group which then iden-
tifies a tag permission to test. This prevents agents from
manipulating threads of other agents even if one agent in-
vokes methods of another. A configurablethreads filter
sorts threads created by “special” classes (e.g. classes of
the Abstract Window Toolkit(AWT)) into separate thread
groups so that these do not interfere with agent threads.

An agent’s classes are loaded by its dedicated class
loader. This class loader supports loading classes that came
bundled with the agent, as well as loading classes from
remoted code sources specified in the agent. All loaded
classes (save those in the class path of the server) are veri-
fied against a configurable set of trusted hash functions. The
digests of verified classes must match corresponding digests
signed by the agent’s owner (which can be regarded as layer
three). Thus, only classes authorized by the agent’s owner
for use with his agent are loaded into the agent’s namespace.

Agents cannot share classes so one agent cannot not load
a Trojan Horse class into the name space of any other agent.
However, in order to allow method invocations between
agents, they may share interfaces. Interfaces are deemed
to be the same if their trusted digests match. In this case,
an agent’s class loader returns a previously loaded inter-
face rather than loading the interface again from the served
agent, so that the interfaces used by the agents are type-
compatible wherever possible. Of course, this works only
if the interface classes referenced by two agents are bitwise
identical. Improved schemes may compare interface imple-

mentations on the API level. However, this adds overhead
to the class loading process, and is not yet implemented.
Interface objects are managed in aMap that is global to all
agent class loaders. Pollution attacks on thisMap require
breaking the trusted hash functions.

Before a class is defined in the Java VM, the bytecode of
that class has to pass a filter pipeline similar to the one for
incoming agents. Each class filter can inspect, reject, and
even modify the bytecode. SeMoA comes with an example
filter that rejects classes which implementfinalize() .
Malicious agents may implement this method in order to
attack the garbage collector thread of the hosting VM. Ad-
ditional filters may implement bytecode arbitration e.g. in
order to add resource accounting to agent classes.

Agents are separated from all other agents in the sys-
tem; no references to agent instances are published by de-
fault. The only means to share instances between agents is
to publish them in theregistry. Each agent gets its own
view on the registry (referred to as theagent’s environ-
ment), which tracks the objects registered by that agent.
All published objects are wrapped into proxys which are
created dynamically. If the agent terminates or retracts a
published object, then the agent’s environment instructs the
handler of the corresponding proxy to invalidate its link to
the original object. This makes the original object unavail-
able even to other agents that looked up its reference in the
registry. Furthermore this makes the original object avail-
able for garbage collection.

5 The Registry

The registry maintains any number of servicelevelssub-
ject to configuration in the server’s configuration file. Each
level is identified by a unique name, and for each level the
registry allows to:

• Publish objects under a given name.

• Retract by name.

• Lookup objects by name.

• List the object names.

Furthermore it allows to list the names of all known lev-
els. All operations in the given list are subject to a per-
mission check. Permissions can be granted based on the
level name, service name, and operation. The asterisk can
be used in permissions as a wildcard character for all levels
or all names. The server does not allow asterisks in ordinary
names in order to prevent clashes with wildcards.

Service objects published by SeMoA store the access
control context [9] which is current upon creation in a pri-
vate variable. Privileged actions of these services set the
stored access control context. This prevents leakage of priv-
ileges due to the global visibility of classes in the local class



path. Though malicious code might instantiate service ob-
jects directly without consultation of the registry this does
not give the code extended privileges because the permis-
sions of the freshly created instance are limited to those
granted to the access control context of the malicious code.
In other words agents are required to retrieve the service in-
stance maintained by the registry which is subject to access
control.

The registry is meant to be the low-level bootstrap-
ping mechanism for agents and services to find out about
other services. Any high-level services such as facilitators
of agent communication languages are made available by
means of the registry. Agents must be addressed by means
of services, never directly.

6 Agent Transport and Content Inspection

The basic configuration of a SeMoA server registers two
portal services for agent transportation on thetransport
level. The first one, calledingate, is the portal into the
server. The second, calledoutgate, is the portal out of the
server (see Figure 3).

When an agent passes through a portal then the portal
first scans the levelsecurityfor filter services (either of the
incomingor outgoingtype). The agent (more precisely: its
context) is then handed to each filter in turn for inspection
and annotation. Filters are arranged in the lexical order of
their names. Each filter either accepts or rejects the agent.
At the time of writing, the portals simply dispose of rejected
agents.

Neither portal handles transportation on its own. The
ingateis served by transport services that e. g. listen on net-
work ports. Transport services simply pass a received agent
to theingatewhich decompresses it and takes care of further
processing. Theoutgateis triggered by an event that is fired
when an agent terminates. This event indicates the name of
the agent in question. Theoutgatethen filters the agent as
described above. If the agent set aticket then theoutgate
scans thetransportlevel for a transport service that accepts
the ticket. The first transport service that agrees in trans-
porting the agent wins. A ticket consists a set of alternative
URLs pointing at the desired destination. See Figure 1 for
illustration.

The transport services enforce a (configurable) maxi-
mum size on the decompressed size of agents. If the size
exceeds the allowed maximum then the decompression is
aborted and the agent is discarded. SeMoA comes with
services that support agent transport via simple socket con-
nections (either plain or SSL sockets) and HTTP transport.
HTTP transport is handled by means of a Web agent and a
Servlet registered with it. Details of how the Web is inte-
grated in SeMoA can be found in [3].

7 Agent Structure

In SeMoA, mobile agents are transported as Java
Archives (JAR files). The JAR specification of Sun Mi-
crosystems extends ZIP archives with support for digital
signatures by means of adding appropriate signature files
to the contents of the ZIP archive. The signature for-
mat is PKCS#7 [10], a cryptographic message syntax stan-
dard which builds on standards such as ASN.1, X.501, and
X.509. Using PKCS#7 as well, SeMoA extends the JAR
format with support for selective encryption of JAR con-
tents with multiple recipients. Encryption and decryption
is handled transparently for agents by the filters introduced
in Section 3. In order to prevent encrypted parts of an
agent from being copied and used in conjunction with other
agents (cut & pasteattacks), these filters implement a non-
interactive proof of knowledge of the required decryption
keys (see [11] for details).

Each agent bears two digital signatures. The entity that
signs thestatic part of an agent (the part that remains un-
changed throughout the agent’s lifetime) is taken as the
rightful ownerof that agent (the entity on whose behalf the
agent is acting). Each sending server also signs the com-
plete agent (static part plusmutablepart); therefor it binds
the new state of the agent to its static part. In other words,
agent servers commit to the state changes that occurred to
an agent while they hosted this agent. An early discussion
of these concepts can be found in [12].

Agents can use abstractions comparable to the combina-
tion of a Map interface and a filesystem in order to access
and store data in their static and mutable part (denoted its
structure). For instance, a similarfolder abstraction was
used already in TACOMA [13]. When an agent migrates,
its structure is processed by the outgoing security filters,
and is compressed back into a JAR for transport to its des-
tination host. The marshalled instance graph of an agent is
also stored in the agent’s structure. As a side effect, agents
can schedule the computation of snapshots as they see fit.
Agent structures can be backed both by persistent and non-
persistent storage, depending on the server’s configuration.
The agent structure also contains properties of the agent
(key/value pairs), such as a human readable nickname of
the agent and code sources to load classes from. The prop-
erties must be signed by the agent’s owner, thus they are
protected against tampering.

In addition, SeMoA computesimplicit names[14] from
agents, by applying the SHA1 digest algorithm to its
owner’s signature. This renders agent names globally
unique as well as anonymous. Implicit names are used
in SeMoA to provide agent tracing, and will be used for
scalable location-independent routing of messages among
agents as well.



In summary, SeMoA supports four types of access rights
for the folders of an agent:

Read-only: This data can be read on each host but cannot
be modified without breaking the agent’s verifiable
integrity.

Read/write committed: This data can be read and modi-
fied on each host but hosts have to commit to the new
state. The changes can (in principle) be checked and
linked to that host on the agent’s next hop.

Group read: This data can be read only on a predeter-
mined set of authorized hosts. Modification of the
data breaks the agent’s verifiable integrity.

Group read/write: This data can be read and modified
only on a predetermined set of authorised hosts.

Groups of valid recipients can be defined flexibly. The data
a mobile agent gathers on one host can be protected against
eavesdropping by hosts not belonging to the access group
of the folder in which the data is stored. Since the protec-
tion mechanisms are part of the server’s security services,
agents can remain unaware of the cryptographic operations
and key management. The structure of an agent’s JAR file
is given below:

META-INF/ MANIFEST.MF
OWNER.SF
OWNER.(DSA|RSA)
SENDER.SF
SENDER.(DSA|RSA)

SEAL-INF/ INSTALL.MF
namei.EAR i = 1, . . . , n
namej .P7 j = 1, . . . , m

static/ agent.properties
mutable/ instance.ser

The fileagent.properties consists of name/value
pairs. The properties as well as the initial classes brought
by an agent are covered by the owner’s signature, thus any
modification of the properties breaks the static part’s in-
tegrity. The fileinstance.ser contains the serialized
object instance graph of the agent. The information in
SEAL-INF is used to manage selective encryption of agent
contents.

8 Related Work

TheMobile Agent List[15] gives an impression of the va-
riety of current mobile agent systems. A number of systems
on this list share with SeMoA a certain bias towards security
issues, most notably Mole [16], D’Agents [17], Ajanta [18],
and JavaSeal [19].

For instance JavaSeal is more rigorous in its separation
of agents than our system. The price for the improved sepa-
ration is paid in terms of reduced performance and a restric-
tion of the Java environment that is available to the seals
(agents). Seals communicate by means of synchronous
channels; objects that are communicated are passed by
value in order to prevent sharing of object references be-
tween seals. The JavaSeal packages almost completely re-
place the standard JDK packages. Sharing of classes be-
tween seals is minimized. While this improves the security
against DoS attacks and covert channels it also means that
identical copies of many classes must be loaded by the class
loaders of the individual seals.

Ajanta provides a number of mechanisms which are
comparable to the ones we deploy in SeMoA. Agents can
have aread-onlystate which is protected by means of digi-
tal signatures. Atargeted stateis used to reveal parts of the
agent’s state to selected recipients. Each object in the tar-
geted state is encrypted with the public key of its intended
recipient. However, it is not clear how Ajanta prevents an
adversary from cutting encrypted objects out of the targeted
state, and pasting them into the targeted state of an agent
of his own. All the adversary then has to do is to send his
agent to the listed recipients where his agent asks the recipi-
ents to decrypt the objects. Then it brings back the plaintext
objects to the adversary.

9 Open Problems

We decided to build SeMoA on a regular Java Virtual
Machine (VM) with unmodified core packages. This rules
out a number of protective measures that are, in principle,
expected from a viable and secure mobile agent platform.
The foremost shortcoming is the lack of proper resource
control in the Java VM. As a consequence, SeMoA is not
robust against a number of DoS (Denial-of-Service) attacks
such as memory exhaustion.

Another problem is the forced termination of agents or
– more precisely – the termination of threads. All methods
that allow to stop threads are deprecated in Java 2 and using
them anyway provokes inconsistent object states. Even if
stop() is called on the thread of an agent then the agent
might still catch the resultingThreadDeath (or any other
Throwable ) that is propagated up the thread’s stack and
continue. For the time being we chose to ignore this prob-
lem. The SeMoA server flags down agents in case they
should terminate, and builds on their cooperation.

Last not least there are a number of classes in the Java
core package which synchronize on the class object itself.
Since local classes are shared and their visibililty is global
any agent that acquires a lock on such a class object effec-
tively blocks any other threads attempting to access them.

Some of these issues can be dealt with by means of dy-



namic byte code rewriting [20] as well as extended byte
code analysis, restrictions on the visibility of core classes,
and minimization of shared classes as described for instance
by Bryce and Vitek [19]. We did not yet implement said
protective mechanisms though the architecture of SeMoA
supports easy integration of filters suitable for this purpose.

In summary, a number of shortcomings of Java can be
used by malicious agents to launch various DoS attacks.
However, in order to do so, agents need to run first. But
before an agent is run (and even before classes of the agent
are loaded), SeMoA servers verify the claimed identity of
the agent’s owner based on digital signatures and certifi-
cates. Though the culprit can try to cover his tracks, there
is a chance that he can be tracked by means of evidence
logged to a secure host.

10 Conclusions

In this article we gave an overview of the basic archi-
tecture of SeMoA, and we highlighted some of its features
that set it apart from other systems. Most notably, SeMoA is
open to a multitude of transport protocols and supports flex-
ible content inspection of incoming and outgoing agents by
means of filters. Adding new filters is simple. The server
core can be easily tailored to the requirements of a partic-
ular domain by adding the appropriate services. Two com-
plementary pairs of filters handle initial agent authentica-
tion and signing as well as confidentiality of selected fold-
ers in the agent’s structure. Cut & paste attacks on the en-
crypted contents are detected and prevented. Furthermore,
we introduced the notion of tag permissions which are gen-
erated dynamically and which are used to implement per
agent access control to thread groups. The server architec-
ture proved to be very flexible and powerful. We are con-
stantly enhancing the server, among the next things we plan
to do is to provide extended integrity protection of agents
based on mechanisms described by Karjoth et al. [21], as
well as algorithms based on co-operating agents [22].

11 Acknowledgements

Parts of this work were sponsored through the ESPRIT
projectAIMedia: Targeted Advertising on Interactive Me-
dia, project number 26983.

References

[1] J. E. White,Mobile Agents, ch. 18. AAAI/MIT Press,
1997.

[2] D. B. Lange and M. Oshima, “Seven good reasons for
mobile agents,”Communications of the ACM, vol. 42,
pp. 88–89, March 1999.

[3] V. Roth, M. Jalali, R. Hartmann, and C. Roland, “An
application of mobile agents as personal assistants
in electronic commerce,” inProc. 5th Conference on
the Practical Application of Intelligent Agents and
Multi-Agent Technology (PAAM 2000)(J. Bradshaw
and G. Arnold, eds.), (Manchester, UK), pp. 121–132,
April 2000. ISBN 1-902426-07-X.

[4] T. Papaioannou,On the Structuring of Distributed Sys-
tems: The Argument of Mobility. Ph.d. thesis, Lough-
borough University, February 2000.

[5] Sun Microsystems, Inc., JavaTM Cryptography
Architecture API Specification & Reference, July
1999. Internet document available at URL:
http://java.sun.com/j2se/sdk/1.3/
docs/guide/security/CryptoSpec.html .

[6] Sun Microsystems, Inc.,JavaTM Cryptography Exten-
sion API Specification & Reference, 1999. Not avail-
able outside the U.S.A.

[7] T. Dierks and C. Allen, “The TLS protocol version
1.0,” Request for Comments 2246, Internet Engineer-
ing Task Force, jan 1999.

[8] A. Frier, P. Karlton, and P. Kocher, “The SSL 3.0 pro-
tocol.” Netscape Communications Corp., nov 1996.

[9] L. Gong, JavaTM Security Architecture (JDK 1.2).
Sun Microsystems, Inc. in [23], relative URL:
file:/docs/guide/security/spec/
security-spec.doc.html .

[10] RSA Laboratories, “Cryptographic message syntax
standard,” Public Key–Cryptography Standards 7,
RSA Laboratories, Redwood City, CA, USA, 1993.
Available at URL: ftp://ftp.rsa.com/pub/
pkcs/ .

[11] V. Roth and V. Conan, “Encrypting Java Archives and
its application to mobile agent security,” inAgent Me-
diated Electronic Commerce: A European Perspective
(F. Dignum and C. Sierra, eds.), vol. 1991 ofLecture
Notes in Artifical Intelligence, pp. 232–244, Berlin:
Springer Verlag, 2001.

[12] V. Roth and M. Jalali, “Access control and key man-
agement for mobile agents,”Computers & Graphics,
Special Issue on Data Security in Image Communica-
tion and Networks, vol. 22, no. 4, pp. 457–461, 1998.

[13] D. Johansen, “Mobile agent applicability,” in Rother-
mel and Hohl [24], pp. 80–98.



[14] V. Roth, “Scalable and secure global name services
for mobile agents.” 6th ECOOP Workshop on Mobile
Object Systems: Operating System Support, Security
and Programming Languages (Cannes, France, June
2000).

[15] F. Hohl, “The mobile agent list.” Internet document
available at URL http://www.informatik.
uni-stuttgart.de/ipvr/vs/projekte/
mole/mal/mal.ht%ml . Version current 11
October 1999.

[16] M. Straßer, J. Baumann, and F. Hohl, “Mole: A
Java based mobile agent system,” inProceedings of
the 2nd ECOOP Workshop on Mobile Object Systems
(C. Tschudin and J. Vitek, eds.), 1996.

[17] R. S. Gray, “D’Agents: Security in a multiple lan-
guage, mobile-agent system,” inMobile Agents and
Security(G. Vigna, ed.), vol. 1419 ofLecture Notes in
Computer Science, pp. 154–187, Berlin Heidelberg:
Springer Verlag, 1998.

[18] N. M. Karnik and A. R. Tripathi, “Agent server archi-
tecture for the Ajanta mobile-agent system,” inPro-
ceedings of the 1998 International Conference on Par-
allel and Distributed Processing Techniques and Ap-
plications (PDPTA ’98), (Las Vegas), July 1998.

[19] C. Bryce and J. Vitek, “The JavaSeal Mobile Agent
Kernel,” in Proc. First International Symposium on
Agent Systems and Applications, and Third Interna-
tional Symposium on Mobile Agents (ASA/MA ’99),
1999.

[20] G. Gzajkowski and T. von Eicken, “JRes: A resource
accounting interface for Java,” inProc. ACM OOPSLA
Conference, (Vancouver, BC), October 1998.

[21] G. Karjoth, N. Asokan, and C. G̈ulcü, “Protecting
the computation results of free–roaming agents,” in
Rothermel and Hohl [24], pp. 195–207.

[22] V. Roth, “Secure recording of itineraries through co-
operating agents,” inProc. 4th ECOOP Workshop on
Mobile Object Systems: Secure Internet Mobile Com-
putations, (Brussels, Belgium), pp. 147–154, INRIA,
Domaine de Voluceau, Rocquencourt, B.P. 105, 78153
Le Chesnay Cedex (France), Dépot ĺegal 010598/150,
July 1998.

[23] Sun Microsystems, Inc.,JDK 1.2 Documentation,
1998. Available at URL:http://java.sun.com .

[24] K. Rothermel and F. Hohl, eds.,Proceedings of the
Second International Workshop on Mobile Agents
(MA ’98), vol. 1477 ofLecture Notes in Computer Sci-
ence. Berlin Heidelberg: Springer Verlag, September
1998.



InGate

RawInGate
Agent

HTTPOutGate
Service

Security
Filters

Security
Filters

Agent

Ticket /
URL

OutGate

Figure 1. SeMoA supports multiple gateways for agent transport. Inbound and outbound gateway
services are managed by the ingateand outgate; two central managements services which also pipe
agents through any number of security filters before transport.

ServicesAdministration, audit, logging

Transport Layer Security:
authentication, encryption,

integrity

Content inspection:
filters, digital

signatures, encryption

Dynamic bytecode
loading & filtering,

access control

Dynamic proxy generation,
agent encapsulation

Environment

Agent

Implicit names for privacy
protection and scalable

message routing

Figure 2. The general security architecture of SeMoA resembles that of an onion; agents have to
pass all layers before being installed and launched in the server’s runtime system.



register,
unregister,

request

Server

Registry

Idle
Key

Master

Agents

Foo
Service

identical objects

god

security

transport

Service

Agent

InGate
HTTP

outgate
OutGate

local

Verify
Filter

Encrypt
Filter

Decrypt
Filter

Sign
Filter

Foo
Service

Raw
outgate

Figure 3. The general architecture of SeMoA distinguishes between agents and services. Agents
can register, unregister, and request services. On the other hand, services can refer to and borrow
resources from agents.


